Bridge Disasters in America Part 1

You’re reading novel Bridge Disasters in America Part 1 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

Bridge Disasters in America.

by George L. Vose.

NOTE.

The substance of the following pages appeared originally in "The Railroad Gazette." It was afterwards reproduced in pamphlet form, and has since been several times delivered as an address to various bodies, the last occasion being before the Legislature of Ma.s.sachusetts, 1887. It is now re-published, with some new matter added, in the hope that the public attention may be called to a subject which has so important a bearing upon the public safety.

COPYRIGHT, 1887, BY LEE AND SHEPARD.

_All rights reserved._

BRIDGE DISASTERS IN AMERICA.

Nearly all of the disasters which occur from the breaking down of bridges are caused by defects which would be easily detected by an efficient system of inspection. Not less than forty bridges fall in the United States every year. No system of public inspection or control at present existing has been able to detect in advance the defects in these structures, or to prevent the disasters. After a defective bridge falls, it is in nearly every case easy to see why it did so. It would be just about as easy, in most cases, to tell in advance that such a structure would fall if it ever happened to be heavily loaded. Hundreds of bridges are to-day standing in this country simply because they never happen to have received the load which is at any time liable to come upon them.

A few years ago an iron highway bridge at Dixon, Ill., fell, while a crowd was upon it, and killed sixty persons. The briefest inspection of that bridge by any competent engineer would have been sure to condemn it. A few years later the Ashtabula bridge upon the Lake Sh.o.r.e Railroad broke down under an express train, and killed over eighty pa.s.sengers. The report of the committee of the Ohio Legislature appointed to investigate that disaster concluded, first, that the bridge went down under an ordinary load by reason of defects in its original construction; and, secondly, that the defects in the original construction of the bridge could have been discovered at any time after its erection by careful examination. Hardly had the public recovered from the shock of this terrible disaster when the Tariffville calamity added its list of dead and wounded to the long roll already charged to the ignorance and recklessness which characterize so much of the management of the public works in this country.

There are many bridges now in use upon our railroads in no way better than those at Ashtabula and Tariffville, and which await only the right combination of circ.u.mstances to tumble down. There are, by the laws of chance, just so many persons who are going to be killed on those bridges. There are hundreds of highway bridges now in daily use which are in no way safer than the bridge at Dixon was, and which would certainly be condemned by five minutes of competent and honest inspection. More than that, many of them have already been condemned as unfit for public use, but yet are allowed to remain, and invite the disaster which is sure to come. Can nothing be done to prevent this reckless and wicked waste of human life? Can we not have some system of public control of public works which shall secure the public safety? The answer to this question will be, Not until the public is a good deal more enlightened upon these matters than it is now.

It has been very correctly remarked, that, in order to bring a disaster to the public notice, it must be emphasized by loss of life. The Ashtabula bridge fell, and killed over eighty persons; and a storm of indignation swept over the country, from one end to the other. No language was severe enough to apply to the managers of the Lake Sh.o.r.e Railroad; but if that very bridge had fallen under a freight-train, and no one had been injured, the occurrence would have been dismissed with a paragraph, if, indeed, it had received even that recognition. In February, 1879, a span one hundred and ten feet long of an iron bridge on the Chicago and Alton Railroad at Wilmington fell as a train of empty coal-cars was pa.s.sing over it, and three cars were precipitated into the river, a distance of over thirty feet. No one was injured. Not a word of comment was ever made in regard to this occurrence. Suppose, that, in place of empty coal-cars, the train had consisted of loaded pa.s.senger-cars, and that one hundred persons had been killed. We know very well what the result would have been. Is not the company just as much to blame in one case as the other? On the night of the 8th of November, 1879, one span of the large bridge over the Missouri at St. Charles gave way as a freight-train was crossing it, and seventeen loaded stock-cars fell a distance of eighty feet into the river. Two brakemen and two drovers were killed. This bridge, says the only account that appeared in the papers, did not break apparently, for the whole span "went down" with the cars upon it. It could hardly make much difference to the four men who were killed, whether the bridge broke down, or "went" down. Not a word of comment was ever made in the papers outside of Missouri in regard to this disaster. Suppose, that, in place of seventeen stock-cars, half a dozen pa.s.senger-cars had fallen from a height of eighty feet into the river, and that, in place of killing two brakemen and two drovers, two or three hundred pa.s.sengers had been killed. Is not the public just as much concerned in one case as in the other?

Suppose that a bridge now standing is exactly as unsafe as the Ashtabula bridge was the day before it fell, would it be possible to awaken public attention enough to have it examined? Probably not.

About two years ago an attempt was made to induce one of the leading dailies in this country to expose a wretchedly unsafe bridge in New England. The editor declined, on the ground that the matter was not of sufficient interest for his readers; but less than a month afterwards he devoted three columns of his paper to a detailed account of a bridge disaster in Scotland, and asked why it was that such things must happen, and if there was no way of determining in advance whether a bridge was safe, or not?

This editor certainly would not maintain, that, in itself, it was more important to describe a disaster after it had occurred than to endeavor to prevent the occurrence; but, as a business man, he knew perfectly well that his patrons would read an account giving all of the sickening detail of a terrible catastrophe, while few, if any, would wade through a dry discussion of the means for protecting the public from just such disasters. The public is always very indignant with the effect, but does not care to trouble itself with the cause; but the effect never will be prevented until the cause is controlled; and the sooner the public understands that the cause is in its own hands, to be controlled, or not, as it chooses, the sooner we shall have a remedy for the fearful disasters which are altogether too common in the United States.

In a country where government controls all matters on which the public safety depends, and where no bridge over which the public is to pa.s.s is allowed to be built except after the plans have been approved by competent authority, where no work can be executed except under the rigid inspection of the best experts, nor opened to the public until it has been officially tested and accepted, it makes little or no difference whether the public is informed, or not, upon these matters; but in a country like the United States, where any man may at any time open a shop for the manufacture of bridges, whether he knows any thing about the business, or not, and is at liberty to use cheap and insufficient material, and where public officers are always to be found ready to buy such bridges, simply because the first cost is low, and to place them in the public ways, it makes a good deal of difference. There is at present in this country absolutely no law, no control, no inspection, which can prevent the building and the use of unsafe bridges; and there never will be until the people who make the laws see the need of such control.

There is no one thing more important in this matter than that we should be able to fix precisely the blame in case of disaster upon some person to whom the proper punishment may be applied. If every railway director, or town or county officer, knew that he was held personally accountable for the failure of any bridge in his charge, we should soon have a decided improvement in these structures. If we could show that a certain bridge in a large town had been for a long time old, rotten, worn out, and liable at any moment to tumble down, and could show in addition, that the public officers having charge of such a bridge knew this to be the case, and still allowed the public to pa.s.s over it, we can see at once, that, in case of disaster, the blame would be clearly located, and the action for damages would be short and decisive. Once let a town have heavy damages to pay, and let it know at the same time that the town officers are clearly accountable for the loss, and it is possible that it would be willing to adopt some system that should prevent the recurrence of such an outlay.

To see what may be accomplished by an efficient system of public inspection, it is necessary to know something in regard to the structures to be inspected. We have now in common use in this country, both upon our roads and our railroads, bridges made entirely of iron, bridges of wood and iron combined, and occasionally, though not often nowadays, a bridge entirely of wood; and these structures are to be seen of a great variety of patterns, of all sizes, and in every stage of preservation. Of late so great has been the demand for bridge-work, that this branch of engineering has become a trade by itself; and we find immense works fitted up with an endless variety of the most admirably adapted machine-tools devoted exclusively to the making of bridges of wood, iron, steel, or all combined. As in all division of labor, the result of this specialization has been to improve the quality of the product, to lessen the cost, and to increase the demand, until many of our large firms reckon the length of bridging which they have erected by miles instead of feet. As usual, however, in such cases, unprincipled adventurers are not wanting, who, taking advantage of a great demand, do not hesitate to fit up cheap shops, to buy poor material, and to flood the market with a cla.s.s of bridges made with a single object in view, viz., to sell, relying upon the ignorance--or something worse--of public officials for custom. Not a year pa.s.ses in which some of these wretched traps do not tumble down, and cause a greater or less loss of life, and at the same time, with uninformed people, throw discredit on the whole modern system of bridge-building. This evil affects particularly highway bridges. The ordinary county commissioner or selectman considers himself amply competent to contract for a bridge of wood or iron, though he may never have given a single day of thought to the matter before his appointment to office. The result is, that we see all over the country a great number of highway bridges which have been sold by dishonest builders to ignorant officials, and which are on the eve of falling, and await only an extra large crowd of people, a company of soldiers, a procession, or something of the sort, to break down.

Not many years ago, a new highway bridge of iron was to be made over one of the princ.i.p.al rivers in New England. The county commissioners desired a well-known engineer, especially noted as a bridge-builder, to superintend the work, in order to see that it was properly executed. The engineer, after inspection of the plans, told the commissioners plainly that the design was defective, and would not make a safe bridge; and that, unless it was materially changed, he would have nothing to do with it. The bridge, however, was a cheap one, and, as such, commended itself to the commissioners, who proceeded to have it erected according to the original plan; and these same commissioners now point to that bridge, which has not yet fallen, but which is liable to do so at any time, as a complete vindication of their judgment, so called, as opposed to that of the engineer who had spent his life in building bridges.

An impression exists in the minds of many persons, that it is purely a matter of opinion whether a bridge is safe, or not. In very many cases, however,--perhaps in most,--it is not at all a matter of opinion, but a matter of fact and of arithmetic. The whole question always comes to this: Is the material in this bridge of good quality?

Is there enough of it? Is it correctly disposed, and properly put together? With given dimensions, and knowing the load to be carried, it is a matter of the very simplest computation to fix the size of each member. We know what one square inch of iron will hold, and we know, also, the total number of pounds to be sustained; and it is no matter of opinion, but one of simple division, how many times one will go into the other.

But it may be asked, Can the precise load which is coming upon any structure be exactly fixed? are not the circ.u.mstances under which bridges are loaded very different? Bridges in different localities are certainly subjected to very different loads, and under very different conditions; but the proper loads to be provided for have been fixed by the best authority for all cases within narrow enough limits for all practical purposes. Few persons are aware of the weight of a closely packed crowd of people. Mr. Stoney of Dublin, one of the best authorities, packed 30 persons upon an area of a little less than 30 square feet; and at another time he placed 58 persons upon an area of 57 square feet, the resulting load in the two cases being very nearly 150 pounds to the square foot. "Such cramming,"

says Mr. Stoney, "could scarcely occur in practice, except in portions of a strongly excited crowd; but I have no doubt that it does occasionally so occur." "In my own practice," he continues, "I adopt 100 pounds per square foot as the standard working-load distributed uniformly over the whole surface of a public bridge, and 140 pounds per square foot for certain portions of the structure, such, for example, as the foot-paths of a bridge crossing a navigable river in a city, which are liable to be severely tried by an excited crowd during a boat-race, or some similar occasion." Tredgold and Rankine estimate the weight of a dense crowd at 120 pounds per square foot. Mr. Brunel used 100 pounds in his calculations for the Hungerford Suspension Bridge. Mr. Drewry, an old but excellent authority, observes that any body of men marching in step at from 3 to 3-1/2 miles an hour will strain a bridge at least as much as double the same weight at rest; and he adds, "In prudence, not more than one-sixth the number of infantry that would fill a bridge should be permitted to march over it in step." Mr. Roebling says, in speaking of the Niagara Falls Suspension Bridge, "In my opinion, a heavy train, running at a speed of 20 miles an hour, does less injury to the structure than is caused by 20 heavy cattle under full trot.

Public processions marching to the sound of music, or bodies of soldiers keeping regular step, will produce a still more injurious effect."

Evidently a difference should be made in determining the load for London Bridge and the load for a highway bridge upon a New-England country road in a thinly settled district. A bridge that is strong enough is just as good and just as safe as one that is ten times stronger, and even better; for in a large bridge, if we make it too strong, we make it at the same time too heavy. The weight of the structure itself has to be sustained, and this part of the load is a perpetual drag on the material.

In 1875 the American Society of Civil Engineers, in view of the repeated bridge disasters in this country, appointed a committee to report upon The Means of Averting Bridge Accidents. We might expect, when a society composed of some hundreds of our best engineers selects an expert committee of half a dozen men, that the best authority would be pretty well represented; and such was eminently the case. It would be impossible to have combined a greater amount of acknowledged talent, both theoretical and practical, with a wider and more valuable experience than this committee possessed. The first point taken up in the report is the determination of the loads for which both railroad and highway bridges should be proportioned. In regard to highway bridges, a majority of the committee reported that for such structures the standard loads should not be less than as shown in the following table:--

+-------------------+----------+----------+----------+ POUNDS PER SQUARE FOOT. SPAN. +----------+----------+----------+ CLa.s.s A. CLa.s.s B. CLa.s.s C. +-------------------+----------+----------+----------+ 60 feet and less 100 100 70 60 to 100 feet 90 75 60 100 to 200 feet 75 60 50 200 to 400 feet 60 50 40 +-------------------+----------+----------+----------+

Cla.s.s A includes city and suburban bridges, and those over large rivers, where great concentration of weight is possible. Cla.s.s B denotes highway bridges in manufacturing districts having well-ballasted roads. Cla.s.s C refers to ordinary country-road bridges, where travel is less frequent and lighter. A minority of the committee modified the table above by making the loads a little larger. The whole committee agreed in making the load per square foot less as the span is greater, which is, of course, correct. It would seem eminently proper to make a difference between a bridge which carries the continuous and heavy traffic of a large city, and one which is subjected only to the comparatively light and infrequent traffic of a country road. At the same time it should not be forgotten, that, in a large part of the United States, a bridge may be loaded by ten, fifteen, or even twenty pounds per square foot by snow and ice alone, and that the very bridges which from their location we should be apt to make the lightest, are those which would be most likely to be neglected, and not relieved from a heavy acc.u.mulation of snow. In view of the above, and remembering that a moving load produces a much greater strain upon a bridge than one which is at rest, we may be sure, that, as the committee above referred to recommend, the loads should not be less than those given in the table. We can easily see that in special cases they should be more.

There is another point in regard to loading a highway bridge, which is to be considered. It often happens that a very heavy load is carried over such bridges upon a single truck, thus throwing a heavy and concentrated load upon each point as it pa.s.ses. Mr. Stoney states that a wagon with a crank-shaft of the British s.h.i.+p "Hercules,"

weighing about forty-five tons, was refused a pa.s.sage over Westminster iron bridge, for fear of damage to the structure, and had to be carried over Waterloo bridge, which is of stone; and he says that in many cases large boilers, heavy forgings, or castings reach as high as twelve tons upon a single wheel. The report of the American Society of Civil Engineers, above referred to, advises that the floor system be strong enough to carry the following loads upon four wheels: Cla.s.s A, 24 tons; Cla.s.s B, 16 tons; Cla.s.s C, 8 tons; though it is stated that these do not include the extraordinary loads sometimes taken over highways. "This provision for local loads,"

says Mr. Boller, one of the committee, "may seem extreme; but the jar and jolt of heavy, spring-less loads come directly on all parts of the flooring at successive intervals, and admonish us that any errors should be on the safe side."

To pa.s.s now to railroad bridges, we find here a very heavy load coming upon the structure in a sudden, and often very violent, manner. Experiment and observation both indicate that a rapidly moving load produces an effect equal to double the same load at rest.

This effect is seen much more upon short bridges, where the moving load is large in proportion to the weight of the bridge, than upon long spans, where the weight of the bridge itself is considerable.

The actual load upon a short bridge is also more per foot than upon a long one, because the locomotive, which is much heavier than an equal length of cars, may cover the whole of a short span, but only a part of a longer one. The largest engines in use upon our railroads weigh from 75,000 to 80,000 pounds on a wheel-base of not over twelve feet in length, or 2,800 pounds per foot for the whole length of the engine, and from 20,000 to 24,000 pounds on a single pair of wheels.

The heaviest coal-trains will weigh nearly a ton to the foot, ordinary freight-trains from 1,600 to 1,800 pounds, and pa.s.senger-trains from 1,000 to 1,200 pounds per foot. Any bridge is liable to be traversed by two heavy freight-engines followed by a load of three-quarters of a ton to the foot; so that if we proportion a bridge to carry 3,000 pounds per foot for the total engine length, and one ton per foot for the rest of the bridge, bearing in mind that any one point may be called upon to sustain 24,000 pounds, and regarding the increase of strain upon short spans due to high speeds, we have the following loads for different spans exclusive of the weight of the bridge:--

+---------+-----------------+ SPAN. LBS. PER FOOT. +---------+-----------------+ 12 7,000 +---------+-----------------+ 15 6,000 +---------+-----------------+ 20 4,800 +---------+-----------------+ 25 4,000 +---------+-----------------+ 30 3,600 +---------+-----------------+ 40 3,200 +---------+-----------------+ 50 3,000 +---------+-----------------+ 100 2,800 +---------+-----------------+ 200 2,600 +---------+-----------------+ 300 2,500 +---------+-----------------+ 400 2,450 +---------+-----------------+ 500 2,400 +---------+-----------------+

The above does not vary essentially from the English practice, and is substantially the same as given by the committee of the American Society of Civil Engineers.

The load which any bridge will be required to carry being determined, and the general plan and dimensions fixed, the several strains upon the different members follow by a simple process of arithmetic, leaving to be determined the actual dimensions of the various parts, a matter which depends upon the power of different kinds of material to resist different strains. This brings us to the exceedingly important subject of the nature and strength of materials.

It has been said that we know what one square inch of iron will hold.

Like the question of loads above examined, this is a matter which has been settled, at any rate within very narrow limits, by the experience of many years of both European and American engineers. A bar of the best wrought-iron an inch square will not break under a tensile strain of less than sixty thousand pounds. Only a small part of this, however, is to be used in practice. A bar or beam may be loaded with a greater weight applied as a permanent or dead-load than would be safe as a rolling or moving weight. A load may be brought upon any material in an easy and gradual manner, so as not to damage it; while the same load could not be suddenly and violently applied without injury. The margin for safety should be greater with a material liable to contain hidden defects, than with one which is not so; and it should be greater with any member of a bridge which is subjected to several different kinds of strain, than for one which has to resist only a single form of strain. Respect, also, should be had to the frequency with which any part is subjected to strain from a moving load, as this will influence its power of endurance. The rule in structures having so important an office to perform as railroad or highway bridges, should be, in all cases, absolute safety under all conditions.

The British Board of Trade fixes the greatest strain that shall come upon the material in a wrought-iron bridge, from the combined weight of the bridge and load, at 5 tons per square inch of the net section of the metal. The French practice allows 3-8/10 tons per square inch of the cross section of the metal, which, considering the amount taken out by rivet-holes, is substantially the same as the English allowance. The report of the American Society of Civil Engineers, above referred to, recommends 10,000 pounds per inch as the maximum for wrought-iron in tension in railroad bridges. For highway bridges a unit strain of 15,000 pounds per square inch is often allowed. A very common clause in a specification is that the _factor of safety_ shall be four, five, or six, as the case may be, meaning by this that the actual load shall not exceed one-fourth, one-fifth, or one-sixth part of the breaking-load. It is a little unfortunate that this term, factor of safety, has found its way into use just as it has; for it by no means indicates what is intended, or what it is supposed to.

The true margin for safety is not the difference between the working-strain and the breaking-strain, but between the working-strain and that strain which will in any way unfit the material for use. Now, any material is unfitted for use when it is so far distorted by overstraining that it cannot recover, or, technically speaking, when its elastic limit has been exceeded. The elastic limit of the best grades of iron is just about half the breaking-weight, or from 25,000 to 30,000 pounds per inch. A poor iron will often show a very fair breaking-strength, but, at the same time, will have a very low elastic limit, and be entirely unfit for use in a bridge. A piece of iron of very inferior quality will often sustain a greater load before breaking than a piece of the best and toughest material, for the reason that a tough but ductile iron will stretch before giving way, thus reducing the area of section, while a hard but poor iron will keep nearly its full size until it breaks. A tough and ductile iron should bend double, when cold, without showing any signs of fracture, and should stretch fifteen per cent of its length before breaking; but much of the iron used in bridges, although it may hold 40,000 or 50,000 pounds per inch before failing, will not bend over 90 degrees without cracking, and has an elastic limit as low as 18,000 pounds. It is thus full as important to specify that an iron should have a high elastic limit as that it should have a high breaking-weight. A specification which allowed no material to be strained by more than 10,000 pounds per inch, and no iron to be used with a less elastic limit than 25,000 pounds, would, at the same time, agree with the standard requirement, both in England and in the United States, and would also secure a good quality of iron.

Two doc.u.ments published some time since ill.u.s.trate the preceding remarks. The first is the account of the tests of the iron taken from the Tariffville bridge after its failure, and the second is the specification for bridges on the Cincinnati Southern Railroad. The Tariffville bridge, though nominally a wooden one, like most structures of the kind relied entirely upon iron rods to keep the wood-work together. Although the rods were too small, and seriously defective in manufacture, the bridge ought not to have fallen from that cause. The ultimate strength of the iron was not what it should have been, but yet it was not low enough to explain the disaster; but when we look at the _quality_ of the iron, we have the cause of the fall. The rods taken from the bridge show an ultimate tensile strength of 47,560 pounds per inch, but an elastic limit of only 19,000 pounds; while the strain which was at any time liable to come on them was 22,000 pounds per inch, or 3,000 pounds more than the elastic limit. The fracture of the tested rods, which, it is stated, broke with a single blow of the hammer very much in the manner of cast-iron, showed a very inferior quality of metal. The rods broke in the bridge exactly where we should look for the failure; viz., in the screw at the end. No ordinary inspection would have detected this weakness. No inspection _did_ detect it, but a proper specification faithfully carried out would have prevented the disaster.

Look now at an extract from the specification for bridges upon the Cincinnati Southern Railway:--

"All parts of the bridges and trestleworks must be proportioned to sustain the pa.s.sage of the following rolling-load at a speed of not less than 30 miles an hour: viz., two locomotives coupled, each weighing 36 tons on the drivers in a s.p.a.ce of 12 feet, the total weight of each engine and tender loaded being 66 tons in a s.p.a.ce of 50 feet, and followed by loaded cars weighing 20 tons each in a s.p.a.ce of 22 feet. An addition of 25 per cent will be made to the strains produced by the rolling-load considered as static in all parts which are liable to be thrown suddenly under strain by the pa.s.sage of a rapidly moving load. A similar addition of 50 per cent will be made to the strain on suspension links and riveted connections of stringers with floor-beams, and floor-beams with trusses. The iron-work shall be so proportioned that the weight of the structure, together with the above specified rolling-load, shall in no part cause a tensile strain of more than 10,000 pounds per square inch of sectional area. Iron used under tensile strain shall be tough, ductile, of uniform quality, and capable of sustaining not less than 50,000 pounds per square inch of sectional area without fracture, and 25,000 pounds per square inch without taking a permanent set. The reduction of area at the breaking-point shall average 25 per cent, and the elongation 15 per cent. When cold, the iron must bend, without sign of fracture, from 90 to 180 degrees."

A specification like this, properly carried out, would put an absolute stop to the building of such structures as the Tariffville Bridge, and would prevent a very large part of the catastrophes which so often shock the community, and shake the public faith in iron bridges. Reference has been made above to the proper loads to be placed upon wrought-iron when under a tensile strain. Similar loads have been determined for other materials, and for other kinds of strain.

The preceding remarks in regard to the loads for which bridges should be designed, and the safe weight to be put upon the material, are given to show how far the safety of a bridge is a matter of fact, and how far a matter of opinion. It will be seen that the limits within which we are at liberty to vary, are quite narrow, so that bridge-building may correctly be called a science; and there is no excuse for the person who guesses, either at the load which a bridge should be designed to bear, or at the size of the different members of the structure. Still less can we excuse the man who not only guesses, but who, in order to build cheaply, persistently guesses on the wrong side.

It will, of course, be understood, when it is said that bridge-building may be called a science, that it can only be so when in the hands of an engineer whose judgment has been matured by wide experience, and who understands that no mechanical philosophy can be applied to practice which is not subject to the contingencies of workmans.h.i.+p. There are many bridges which will stand the test of figures very well, and which are nevertheless very poor structures.

The general plan of a bridge may be good, the computations all right, and yet it may break down under the first train that pa.s.ses over it.

There are many practical considerations that cannot be, at any rate have not yet been, reduced to figures. It is not enough that the strains upon each member of a bridge should be correctly estimated, and fall within the safe limits: the different members of the bridge must be so connected, and the mechanical details such, as to insure, under all conditions, the a.s.sumed action of the several parts. In fine, while we can say that a bridge that does not stand the test of arithmetic is a bad bridge, we cannot always say that a structure which does stand such a test is a good one.

We often hear it argued that a bridge must be safe, since it has been submitted to a heavy load, and did not break down. Such a test means absolutely nothing. It does not even show that the bridge will bear the same load again, much less does it show that it has the proper margin for safety. It simply shows that it did not break down at that time. Every rotten, worn-out, and defective bridge that ever fell has been submitted to exactly that test. More than this, it has repeatedly happened that a heavy train has pa.s.sed over a bridge in apparent safety, while a much lighter one pa.s.sing directly afterwards has gone through. In almost all such cases, the structure has been weak and defective; and finally some heavy load pa.s.ses over, and cripples the bridge, so that the next load produces a disaster. For the test of a bridge to be in any way satisfactory, we must know just what effect such test has had upon the structure. We do not find this out by simply standing near, and noting that the bridge did not break down. We must satisfy ourselves beyond all question that no part has been overstrained.

A short time ago the builders of a wretchedly cheap and unsafe highway bridge, in order to quiet a fear which had arisen that the structure was not altogether sound, tested a span 122 feet long with a load of 58,000 pounds; and inasmuch as the bridge did not break down under this load, which was less than a quarter part of what it was warranted to carry safely, the county commissioners considered the result eminently satisfactory, and remarked that the test was made merely to satisfy the public that the bridge was abundantly safe for all practical uses. The public would, no doubt, have been satisfied that the Ashtabula bridge was abundantly safe for all practical uses had it stood on that bridge in the morning and seen a heavy freight-train go over it, and yet that very bridge broke down directly afterwards under a pa.s.senger-train.

Now, according to the common notion, that was a good bridge in the morning, and a very bad bridge, or rather, no bridge at all, in the evening. The question for the public is, When did it cease to be a good bridge, and begin to be a bad one? A test like the one referred to above can do no more than ill.u.s.trate the ignorance or lack of honesty of those who make it, or those who are satisfied with it.

Such a test might come within a dozen pounds of breaking the bridge down, and no one be the wiser. The entire absurdity of such testing has recently been ill.u.s.trated in the most decided manner. The very same company that built the bridge above referred to, made also another one on exactly the same plan, and of almost precisely the same size, and tested it when done by placing almost exactly the same load upon it. The bridge did not break down; and the county commissioners, for whom the work was done, were satisfied that it was "abundantly safe for all practical uses," accepted it, paid for it; and in less than ten years it broke down under a single team and a little snow, weighing in all not over one-tenth part of the load the bridge was warranted to carry, and not over one-half the load with which it had been previously tested. If this bridge had been "tested"

by five minutes of honest arithmetic, it would have been promptly condemned the very day it was finished.

Bridge Disasters in America Part 1

You're reading novel Bridge Disasters in America Part 1 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


Bridge Disasters in America Part 1 summary

You're reading Bridge Disasters in America Part 1. This novel has been translated by Updating. Author: George L. Vose already has 1159 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com

  • Related chapter:

RECENTLY UPDATED NOVEL