Fragments of science Part 47

You’re reading novel Fragments of science Part 47 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

Had s.p.a.ce allowed, it would have given me pleasure to point out the present position of the 'germ theory' in reference to the phenomena of infectious disease, distinguis.h.i.+ng arguments based on a.n.a.logy--which, however, are terribly strong--from those based on actual observation.

I should have liked to follow up the account I have already given [Footnote: 'Fortnightly Review,' November 1876, see article 'Fermentation.'] of the truly excellent researches of a young and an unknown German physician named Koch, on splenic fever, by an account of what Pasteur has recently done with reference to the same subject.

Here we have before us a living _contagium_ of the most deadly power, which we can follow from the beginning to the end of its life cycle.

[Footnote: Dallinger and Drysdale had previously shown what skill and patience can accomplish, by their admirable observations on the life history of the monads.] We find it in the blood or spleen of a smitten animal in the state say of short motionless rods. When these rods are placed in a nutritive liquid on the warm stage of the microscope, we soon see them lengthening into filaments which lie, in some cases, side by side, forming in others graceful loops, or becoming coiled into knots of a complexity not to be unravelled. We finally see those filaments resolving themselves into innumerable spores, each with death potentially housed within it, yet not to be distinguished microscopically from the harmless germs of Bacillus subtilis. The bacterium of splenic fever is called Bacillus Anthracis. This formidable organism was shown to me by M. Pasteur in Paris last July. His recent investigations regarding the part it plays pathologically certainly rank amongst the most remarkable labours of that remarkable man. Observer after observer had strayed and fallen in this land of pitfalls, a mult.i.tude of opposing conclusions and mutually destructive theories being the result. In a.s.sociation with a younger physiological colleague, M. Joubert, Pasteur struck in amidst the chaos, and soon reduced it to harmony.

They proved, among other things, that in cases where previous observers in France had supposed themselves to be dealing solely with splenic fever, another equally virulent factor was simultaneously active. Splenic fever was often overmastered by septicaemia, and results due solely to the latter had been frequently made the ground of pathological inferences regarding the character and cause of the former. Combining duly the two factors, all the previous irregularities disappeared, every result obtained receiving the fullest explanation. On studying the account of this masterly investigation, the words wherewith Pasteur himself feelingly alludes to the difficulties and dangers of the experimenter's art came home to me with especial force: 'J'ai tant de fois eprouve que dans cet art difficile de l'experimentation les plus habiles bronchent a chaque pas, et que l'interpretation des faits nest pas moins perilleuse.'

[Footnote: Comptes-Rendus,' lx.x.xiii. p. 177.]

XIV SCIENCE AND MAN.

[Footnote: Presidential Address, delivered before the Birmingham and Midland Inst.i.tute, October 1877; with additions.]

A MAGNET attracts iron; but when we a.n.a.lyse the effect we learn that the metal is not only attracted but repelled, the final approach to the magnet being due to the difference of two unequal and opposing forces. Social progress is for the most part typified by this duplex or polar action. As a general rule, every advance is balanced by a partial retreat, every amelioration is a.s.sociated more or less with deterioration. No great mechanical improvement, for example, is introduced for the benefit of society at large that does not bear hardly upon individuals. Science, like other things, is subject to the operation of this polar law, what is good for it under one aspect being bad for it under another.

Science demands above all things personal concentration. Its home is the study of the mathematician, the quiet laboratory of the experimenter, and the cabinet of the meditative observer of nature.

Different atmospheres are required by the man of science, as such, and the man of action. Thus the facilities of social and international intercourse, the railway, the telegraph, and the post-office, which are such undoubted boons to the man of action, react to some extent injuriously on the man of science. Their tendency is to break up that concentrativeness which, as I have said, is an absolute necessity to the scientific investigator.

The men who have most profoundly influenced the world from the scientific side have habitually sought isolation. Faraday, at a certain period of his career, formally renounced dining out. Darwin lives apart from the bustle of the world in his quiet home in Kent.

Mayer and Joule dealt in un.o.btrusive retirement with the weightiest scientific questions. There is, however, one motive power in the world which no man, be he a scientific student or otherwise, can afford to treat with indifference; and that is, the cultivation of right relations with his fellow-men--the performance of his duty, not as an isolated individual, but as a member of society. It is duty in this aspect, overcoming alike the sense of possible danger and the desire for repose, that has placed me in your presence here to-night.

To look at his picture as a whole, a painter requires distance; and to judge of the total scientific achievement of any age, the standpoint of a succeeding age is desirable. We may, however, transport ourselves in idea into the future, and thus survey with more or less completeness the science of our time. We sometimes hear it decried, and contrasted to its disadvantage with the science of other times. I do not think that this will be the verdict of posterity. I think, on the contrary, that posterity will acknowledge that in the history of science no higher samples of intellectual conquest are recorded than those which this age has made its own. One of the most salient of these I propose, with your permission, to make the subject of our consideration during the coming hour.

It is now generally admitted that the man of to-day is the child and product of incalculable antecedent time. His physical and intellectual textures have been woven for him during his pa.s.sage through phases of history and forms of existence which lead the mind back to an abysmal past. One of the qualities which he has derived from that past is the yearning to let in the light of principles on the otherwise bewildering flux of phenomena. He has been described by the German Lichtenberg as 'das rastlose Ursachenthier'--the restless cause-seeking animal--in whom facts excite a kind of hunger to know the sources from which they spring. Never, I venture to say, in the history of the world has this longing been more liberally responded to, both among men of science and the general public, than during the last thirty or forty years. I say 'the general public,' because it is a feature of our time that the man of science no longer limits his labours to the society of his colleagues and his peers, but shares, as far as it is possible to share, with the world at large the fruits of enquiry.

The celebrated Robert Boyle regarded the universe as a machine; Mr.

Carlyle prefers regarding it as a tree. He loves the image of the umbrageous Igdrasil better than that of the Strasburg clock. A machine may be defined as an organism with life and direction outside; a tree may be defined as an organism with life and direction within.

In the light of these definitions, I close with the conception of Carlyle. The order and energy of the universe I hold to be inherent, and not imposed from without, the expression of fixed law and not of arbitrary will, exercised by what Carlyle would call an Almighty Clockmaker. But the two conceptions are not so much opposed to each other after all. In one fundamental particular they at all events agree. They equally imply the interdependence and harmonious interaction of parts, and the subordination of the individual powers of the universal organism to the working of the whole.

Never were the harmony and interdependence just referred to so clearly recognised as now. Our insight regarding them is not that vague and general insight to which our fathers had attained, and which, in early times, was more frequently affirmed by the synthetic poet than by the scientific man. The interdependence of our day has become quant.i.tative--expressible by numbers--leading, it must be added, directly into that inexorable reign of law which so many gentle people regard with dread. In the domain now under review men of science had first to work their way from darkness into twilight, and from twilight into day. There is no solution of continuity in science. It is not given to any man, however endowed, to rise spontaneously into intellectual splendour without the parentage of antecedent thought.

Great discoveries grow. Here, as in other cases, we have first the seed, then the ear, then the full corn in the ear, the last member of the series implying the first. Thus, as regards the discovery of gravitation with which the name of Newton is identified, notions more or less clear concerning it had entered many minds before Newton's transcendent mathematical genius raised it to the level of a demonstration. The whole of his deductions, moreover, rested upon the inductions of Kepler. Newton shot beyond his predecessors; but his thoughts were rooted in their thoughts, and a just distribution of merit would a.s.sign to them a fair portion of the honour of discovery.

Scientific theories sometimes float like rumours in the air before they receive complete expression. The doom of a doctrine is often practically sealed, and the truth of one is often practically accepted, long prior to the demonstration of either the error or the truth.

Perpetual motion was discarded before it was proved to be opposed to natural law; and, as regards the connection and interaction of natural forces, intimations of modern discoveries are strewn through the writings of Leibnitz, Boyle, Hooke, Locke and others.

Confining ourselves to recent times, Dr. Ingleby has pointed out to me some singularly sagacious remarks bearing upon this question, which were published by: an anonymous writer in 1820. Roget's penetration was conspicuous in 1829. Mohr had grasped in 1837 some deep-lying truth. The writings of Faraday furnish frequent ill.u.s.trations of his profound belief in he unity of nature. 'I have long,' he writes in 1845, 'held an opinion almost amounting to conviction, in common, I believe, with other lovers of natural knowledge, that the various forms under which the forces of matter are made manifest have one common origin, or, in other words, are so directly related and mutually dependent, that they are convertible, as it were, one into another, and possess equivalence of power in their action.' His own researches on magneto-electricity, on electro-chemistry, and on the 'magnetisation of light led him directly to this belief. At an early date Mr. Justice Grove made his mark upon this question. Colding, though starting from a metaphysical basis, grasped eventually the relation between heat and mechanical work, and sought to determine it experimentally. And here let me say, that to him who has only the truth at heart, and who in his dealings with scientific history keeps his soul unwarped by envy, hatred, or malice, personal or national, every fresh accession to historic knowledge must be welcome. For every new-comer of proved merit, more especially if that merit should have been previously overlooked, he makes ready room in his recognition or his reverence. But no retrospect of scientific literature has as yet brought to light a claim which can sensibly affect the positions accorded to two great Path-hewers, as the Germans call them, whose names in relation to this subject are linked in indissoluble a.s.sociation. These names are Julius Robert Mayer and James Prescott Joule.

In his essay on 'Circles' Mr. Emerson, if I remember rightly, pictured intellectual progress as rhythmic. At a given moment knowledge is surrounded by a barrier which marks its limit. It gradually gathers clearness and strength until by-and-by some thinker of exceptional power bursts the barrier and wins a wider circle, within which thought once more entrenches itself. But the internal force again acc.u.mulates, the new barrier is in its turn broken, and the mind finds itself surrounded by a still wider horizon. Thus, according to Emerson, knowledge spreads by intermittent victories instead of progressing at a uniform rate.

When Dr. Joule first proved that a weight of one pound, falling through a height of seven hundred and seventy-two feet, generated an amount of heat competent to warm a pound of water one degree Fahrenheit, and that in lifting the weight so much heat exactly disappeared, he broke an Emersonian 'circle,' releasing by the act an amount of scientific energy which rapidly overran a vast domain, and embodied itself in the great doctrine known as the 'Conservation of Energy.' This doctrine recognises in the material universe a constant sum of power made up of items among which the most Protean fluctuations are incessantly going on. It is as if the body of Nature were alive, the thrill and interchange of its energies resembling those of an organism. The parts of the 'stupendous whole' s.h.i.+ft and change, augment and diminish, appear and disappear, while the total of which they are the parts remains quant.i.tatively immutable. Immutable, because when change occurs it is always polar--plus accompanies minus, gain accompanies loss, no item varying in the slightest degree without an absolutely equal change of some other item in the opposite direction.

The sun warms the tropical ocean, converting a portion of its liquid into vapour, which rises in the air and is recondensed on mountain heights, returning in rivers to the ocean from which it came. Up to the point where condensation begins, an amount of heat exactly equivalent to the molecular work of vaporisation and the mechanical work of lifting the vapour to the mountain-tops has disappeared from the universe. What is the gain corresponding to this loss? It will seem when mentioned to be expressed in a foreign currency. The loss is a loss of heat; the gain is a gain of distance, both as regards ma.s.ses and molecules. Water which was formerly at the sea-level has been lifted to a position from which it can fall; molecules which have been locked together as a liquid are now separate as vapour which can recondense. After condensation gravity comes into effectual play, pulling the showers down upon the hills, and the rivers thus created through their gorges to the sea. Every raindrop which smites the mountain produces its definite amount of heat; every river in its course develops heat by the clash of its cataracts and the friction of its bed. In the act of condensation, moreover, the molecular work of vaporisation is accurately reversed. 'Compare, then, the primitive loss of solar warmth with the heat generated by the condensation of the vapour, and by the subsequent fall of the water from cloud to sea.

They are mathematically equal to each other. No particle of vapour was formed and lifted without being paid for in the currency of solar heat; no particle returns as water to the sea without the exact quant.i.tative rest.i.tution of that heat. There is nothing gratuitous in physical nature, no expenditure without equivalent gain, no gain without equivalent expenditure. With inexorable constancy the one accompanies the other, leaving no nook or crevice between them for spontaneity to mingle with the pure and necessary play of natural force. Has this uniformity of nature ever been broken? The reply is:

'Not to the knowledge of science.'

What has been here stated regarding heat and gravity applies to the whole of inorganic nature. Let us take an ill.u.s.tration from chemistry. The metal zinc may be burnt in oxygen, a perfectly definite amount of heat being produced by the combustion of a given weight of the metal. But zinc may also be burnt in a liquid which contains a supply of oxygen--in water, for example. It does not in this case produce flame or fire, but it does produce heat which is capable of accurate measurement. But the heat of zinc burnt in water falls short of that produced in pure oxygen, the reason being that to obtain its oxygen from the water the zinc must first dislodge the hydrogen. It is in the performance of this molecular work that the missing heat is absorbed. Mix the liberated hydrogen with oxygen and cause them to recombine; the heat developed is mathematically equal to the missing heat. Thus in pulling the oxygen and hydrogen asunder an amount of heat is consumed which is accurately restored by their reunion.

This leads up to a few remarks upon the Voltaic battery. It is not my design to dwell upon the technical features of this wonderful instrument, but simply, by means of it, to show what varying shapes a given amount of energy can a.s.sume while maintaining unvarying quant.i.tative stability. When that form of power which we call an electric current pa.s.ses through Grove's battery, zinc is consumed in acidulated water; and in the battery we are able so to arrange matters that when no current pa.s.ses no zinc shall be consumed. Now the current, whatever it may be, possesses the power of generating heat outside the battery. We can fuse with it iridium, the most refractory of metals, or we can produce with it the dazzling electric light, and that at any terrestrial distance from the battery itself.

We will now, however, content ourselves with causing the current to raise a given length of platinum wire, first to a blood-heat, then to redness, and finally to a white heat. The heat under these circ.u.mstances generated in the battery by the combustion of a fixed quant.i.ty of zinc is no longer constant, but it varies inversely as the heat generated outside. If the outside heat be nil, the inside heat is a maximum; if the external wire be raised to a blood-heat, the internal heat falls slightly short of the maximum. If the wire be rendered red-hot, the quant.i.ty of missing heat within the battery is greater, and if the external wire be rendered white-hot, the defect is greater still. Add together the internal and external heat produced by the combustion of a given weight of zinc, and you have an absolutely constant total. The heat generated without is so much lost within, the heat generated within is so much lost without, the polar changes already adverted to coming here conspicuously into play. Thus in a variety of ways we can distribute the items of a never-varying sum, but even the subtle agency of the electric current places no creative power in our hands.

Instead of generating external heat, we may cause the current to effect chemical decomposition at a distance from the battery. Let it, for example, decompose water into oxygen and hydrogen. The heat generated in the battery under these circ.u.mstances by the combustion of a given weight of zinc falls short of what is produced when there is no decomposition. How far short? The question admits of a perfectly exact answer. When the oxygen and hydrogen recombine, the heat absorbed in the decomposition is accurately restored, and it is exactly equal in amount to that missing in the battery. We may, if we like, bottle up the gases, carry in this form the heat of the battery to the polar regions, and liberate it there. The battery, in fact is a hearth on which fuel is consumed; but the heat of the combustion, instead of being confined in the usual manner to the hearth itself, may be first liberated at the other side of the world.

And here we are able to solve an enigma which long perplexed scientific men, and which could not be solved until the bearing of the mechanical theory of heat upon the phenomena of the Voltaic battery was understood. The puzzle was, that a single cell could not decompose water. The reason is now plain enough. The solution of an equivalent of zinc in a single cell develops not much more than half the amount of heat required to decompose an equivalent of water, and the single cell cannot cede an amount of force which it does not possess. But by forming a battery of two cells instead of one, we develop an amount of heat slightly in excess of that needed for the decomposition of the water. The two-celled battery is therefore rich enough to pay for that decomposition, and to maintain the excess referred to within its own cells.

Similar reflections apply to the thermo-electric pile, an instrument usually composed of small bars of bis.m.u.th and antimony soldered alternately together. The electric current is here evoked by warming the soldered junctions of one face of the pile. Like the Voltaic current, the thermo-electric current can heat wires, produce decomposition, magnetise iron, and deflect a magnetic needle at any distance from its origin. You will be disposed, and rightly disposed, to refer those distant manifestations of power to the heat communicated to the face of the pile, but the case is worthy of closer examination. In 1826 Thomas Seebeck discovered thermo-electricity, and six years subsequently Peltier made an observation which comes with singular felicity to our aid in determining the material used up in the formation of the thermo-electric current. He found that when a weak extraneous current was sent from antimony to bis.m.u.th the junction of the two metals was always heated, but that when the direction was from bis.m.u.th to antimony the junction was chilled. Now the current in the thermo-pile itself is always from bis.m.u.th to antimony, across the heated junction--a direction in which it cannot possibly establish itself without consuming the heat imparted to the junction. This heat is the nutriment of the current. Thus the heat generated by the thermo-current in a distant wire is simply that originally imparted to the pile, which has been first trans.m.u.ted into electricity, and then retrans.m.u.ted into its first form at a distance from its origin. As water in a state of vapour pa.s.ses from a boiler to a distant condenser, and there a.s.sumes its primitive form without gain or loss, so the heat communicated to the thermo-pile distils into the subtler electric current, which is, as it were, recondensed into heat in the distant platinum wire.

In my youth I thought an electro-magnetic engine which was shown to me a veritable perpetual motion--a machine, that is to say, which performed work without the expenditure of power. Let us consider the action of such a machine. Suppose it to be employed to pump water from a lower to a higher level. On examining the battery which works the engine we find that the zinc consumed does not yield its full amount of heat. The quant.i.ty of heat thus missing within is the exact thermal equivalent of the mechanical work performed without. Let the water fall again to the lower level; it is warmed by the fall. Add the heat thus produced to that generated by the friction, mechanical and magnetical, of the engine; we thus obtain the precise amount of heat missing in the battery. All the effects obtained from the machine are thus strictly paid for; this 'payment for results' being, I would repeat, the inexorable method of nature.

No engine, however subtly devised, can evade this law of equivalence, or perform on its own account the smallest modic.u.m of work. The machine distributes, but it cannot create. Is the animal body, then, to be cla.s.sed among machines? When I lift a weight, or throw a stone, or climb a mountain, or wrestle with my comrade, am I not conscious of actually creating and expending force? Let us look at the antecedents of this force. We derive the muscle and fat of our bodies from what we eat. Animal heat you know to be due to the slow combustion of this fuel. My arm is now inactive, and the ordinary slow combustion of my blood and tissue is going on. For every grain of fuel thus burnt a perfectly definite amount of heat has been produced. I now contract my biceps muscle without causing it to perform external work. The combustion is quickened, and the heat is increased; this additional heat being liberated in the muscle itself. I lay hold of a 56 lb.

weight, and by the contraction of my biceps lift it through the vertical s.p.a.ce of a foot. The blood and tissue consumed during this contraction have not developed in the muscle their due amount of heat.

A quant.i.ty of heat is at this moment missing in my muscle which would raise the temperature of an ounce of water somewhat more than one degree Fahrenheit. I liberate the weight: it falls to the earth, and by its collision generates the precise amount of heat missing in the muscle. My muscular heat is thus transferred from its local hearth to external s.p.a.ce. The fuel is consumed in my body, but the heat of combustion is produced outside my body. The case is substantially the same as that of the Voltaic battery when it performs external work, or produces external heat. All this points to the conclusion that the force we employ in muscular exertion is the force of burning fuel and not of creative will. In the light of these facts the body is seen to be as incapable of generating energy without expenditure, as the solids and liquids of the Voltaic battery. The body, in other words, falls into the catagory of machines.

We can do with the body all that we have already done with the battery--heat platinum wires, decompose water, magnetise iron, and deflect a magnetic needle. The combustion of muscle may be made to produce all these effects, as the combustion of zinc may be caused to produce them. By turning the handle of a magneto-electric machine a coil of wire may be caused to rotate between the poles of a magnet. As long as the two ends of the coil are unconnected we have simply to overcome the ordinary inertia and friction of the machine in turning the handle. But the moment the two ends of the coil are united by a thin platinum wire a sudden addition of labour is thrown upon the turning arm. When the necessary labour is expended, its equivalent immediately appears. The platinum wire glows. You can readily maintain it at a white heat, or even fuse it. This is a very remarkable result. From the muscles of the arm, with a temperature of 100 degrees, we extract the temperature of molten platinum, which is nearly four thousand degrees. The miracle here is the reverse of that of the burning bush mentioned in Exodus. There the bush burned, but was not consumed--here the body is consumed, but does not burn. The similarity of the action with that of the Voltaic battery when it heats an external wire is too obvious to need pointing out. When the machine is used to decompose water, the heat of the muscle, like that of the battery, is consumed in molecular work, being fully restored when the gases recombine. As before, also, the trans.m.u.ted heat of the muscles may be bottled up, carried to the polar regions, and there restored to its pristine form.

The matter of the human body is the same as that of the world around us; and here we find the forces of the human body identical with those of inorganic nature. Just as little as the Voltaic battery is the animal body a creator of force. It is an apparatus exquisite and effectual beyond all others in transforming and distributing the energy with which it is supplied, but it possesses no creative power.

Compared with the notions previously entertained regarding the play of 'Vital force' this is a great result. The problem of vital dynamics has been described by a competent authority as 'the grandest of all.'

I subscribe to this opinion, and honour correspondingly the man who first successfully grappled with the problem. He was no pope, in the sense of being infallible, but he was a man of genius whose work will be held in honour as long as science endures I have already named him in connection with our ill.u.s.trious countryman Dr. Joule. Other eminent men took up this subject subsequently and independently, but all that has been done hitherto enhances instead of diminis.h.i.+ng the merits of Dr. Mayer.

Consider the vigour of his reasoning. 'Beyond the power of generating internal heat, the animal organism can generate heat external to itself. A blacksmith by hammering can warm a nail, and a savage by friction can heat wood to its point of ignition. Unless, then, we abandon the physiological axiom that the animal body cannot create heat out of nothing, we are driven to the conclusion that it is the total heat, within and without, that ought to be regarded as the real calorific effect of the oxidation within the body.' Mayer, however, not only states the principle, but ill.u.s.trates numerically the transfer of muscular heat to external s.p.a.ce. A bowler who imparts a velocity of 30 feet to an 8-lb. ball consumes in the act 0.1 of a grain of carbon. The heat of the muscle is here distributed over the track of the ball, being developed there by mechanical friction. A man weighing 150 lbs. consumes in lifting his own body to a height of 8 feet the heat of a grain of carbon. Jumping from this height the heat is restored. The consumption of 2 oz. 4 drs. 20 grs. of carbon would place the same man on the summit of a mountain 10,000 feet high.

In descending the mountain an amount of heat equal to that produced by the combustion of the foregoing amount of carbon is restored. The muscles of a labourer whose weight is 150 lbs. weigh 64 lbs. When dried they are reduced to 15 lbs. Were the oxidation corresponding to a day-labourer's ordinary work exerted on the muscles alone, they would be wholly consumed in 80 days. Were the oxidation necessary to sustain the heart's action concentrated on the heart itself, it would be consumed in 8 days. And if we confine our attention to the two ventricles, their action would consume the a.s.sociated muscular tissue in 31 days. With a fulness and precision of which this is but a sample did Mayer, between 1842 and, 1845, deal with the great question of vital dynamics.

In direct opposition, moreover, to the foremost scientific authorities of that day, with Liebig at their head, this solitary Heilbronn worker was led by his calculations to maintain that the muscles, in the main, played the part of machinery, converting the fat, which had been previously considered a mere heat-producer, into the motive power of the organism. Mayer's prevision has been justified by events, for the scientific world is now upon his side.

We place, then, food in our stomachs as so much combustible matter. It is first dissolved by purely chemical processes, and the nutritive fluid is poured into the blood. Here it comes into contact with atmospheric oxygen admitted by the lungs. It unites with the oxygen as wood or coal might unite with it in a furnace. The matter-products of the union, if I may use the term, are the same in both cases, viz.

carbonic acid and water. The force-products are also the same--heat within the body, or heat and work outside the body. Thus far every action of the organism belongs to the domain either of physics or of chemistry. But you saw me contract the muscle of my arm. What enabled me to do, so? Was it or was it not the direct action of my will? The answer is, the action of the will is mediate, not direct.

Over and above the muscles the human organism is provided with long whitish filaments of medullary matter, which issue from the spinal column, being connected by it on the one side with the brain, and on the other side losing themselves in the muscles. Those filaments or cords are the nerves, which you know are divided into two kinds, sensor and motor, or, if you like the terms better, afferent and efferent nerves. The former carry impressions from the external world to the brain; the latter convey the behests of the brain to the muscles. Here, as elsewhere, we find ourselves aided by the sagacity of Mayer, who was the first clearly to formulate the part played by the nerves in the organism. Mayer saw that neither nerves nor brain, nor both together, possessed the energy necessary to animal motion; but he also saw that the nerve could lift a latch and open a door, by which floods of energy are let loose. 'As an engineer,' he says with admirable lucidity, 'by the motion of his finger in opening a valve or loosening a detent can liberate an amount of mechanical energy almost infinite compared with its exciting cause; so the nerves, acting on the muscles, can unlock an amount of power out of all proportion to the work done by the nerves themselves.' The nerves, according to Mayer, pull the trigger, but the gunpowder which they ignite is stored in the muscles. This is the view now universally entertained.

The quickness of thought has pa.s.sed into a proverb, and the notion that any measurable time elapsed between the infliction of a wound and the feeling of the injury would have been rejected as preposterous thirty years ago. Nervous impressions, notwithstanding the results of Haller, were thought to be transmitted, if not instantaneously, at all events with the rapidity of electricity. Hence, when Helmholtz, in 1851, affirmed, as the result of experiment, nervous transmission to be a comparatively sluggish process, very few believed him. His experiments may now be made in the lecture-room.

Sound in air moves at the rate of 1,100 feet a second; sound in water moves at the rate of 5,000 feet a second; light in aether moves at the rate of 186,000 miles a second, and electricity in free wires moves probably at the same rate. But the nerves transmit their messages at the rate of only 70 feet a second, a progress which in these quick times might well be regarded as inordinately slow.

Your townsman, Mr. Gore, has produced by electrolysis a kind of antimony which exhibits an action strikingly a.n.a.logous to that of nervous propagation. A rod of this antimony is in such a molecular condition that when you scratch or heat one end of the rod, the disturbance propagates itself before your eyes to the other end, the onward march of the disturbance being announced by the development of heat and fumes along the line of propagation. In some such way the molecules of the nerves are successively overthrown; and if Mr. Gore could only devise some means of winding up his exhausted antimony, as the nutritive blood winds up exhausted nerves, the comparison would be complete. The subject may be summed up, as Du Bois-Reymond has summed it up, by reference to the case of a whale struck by a harpoon in the tail. If the animal were 70 feet long, a second would elapse before the disturbance could reach the brain. But the impression after its arrival has to diffuse itself and throw the brain into the molecular condition necessary to consciousness. Then, and not till then, the command to the tail to defend itself is shot through the motor nerves.

Another second must elapse before the command can reach the tail, so that more than two seconds transpire between the infliction of the wound and the muscular response of the part wounded. The interval required for the kindling of consciousness would probably more than suffice for the destruction of the brain by lightning, or even by a rifle-bullet. Before the organ can arrange itself it may, therefore, be destroyed, and in such a case we may safely conclude that death is painless.

The experiences of common life supply us with copious instances of the liberation of vast stores of muscular power by an infinitesimal 'priming' of the muscles by the nerves. We all know the effect produced on a 'nervous' organisation by a slight sound which causes affright. An aerial wave, the energy of which would not reach a minute fraction of that necessary to raise the thousandth of a grain through the thousandth of an inch, can throw the whole human frame into a powerful mechanical spasm, followed by violent respiration and palpitation. The eye of course, may be appealed to as well as the ear. Of this the lamented Lange gives the following vivid ill.u.s.tration:

Fragments of science Part 47

You're reading novel Fragments of science Part 47 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


Fragments of science Part 47 summary

You're reading Fragments of science Part 47. This novel has been translated by Updating. Author: John Tyndall already has 746 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com