Cooked - A Natural History of Transformat Part 19

You’re reading novel Cooked - A Natural History of Transformat Part 19 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

One intriguing recent study, done by Jan-Hendrik Hehemann from the University of Victoria in British Columbia, reported that a bacterium commonly found in the gut of j.a.panese people produces a rare enzyme capable of digesting seaweed, a trait seldom found in the same bacteria in other populations. The researchers demonstrated that the gene coding for this enzyme originally came from a marine bacterium commonly found on seaweed-Zobellia galactanivorans. The resident gut bacteria, called Bacteroides plebeius, had apparently picked up this useful gene from seaweed in the diet and incorporated it in its genome, where it has been preserved ever since, allowing most j.a.panese to make good use of the seaweed in their diet.* No doubt scientists will soon find other examples of our microbiota mediating our relations.h.i.+p to the rest of nature, speeding our ability to adapt. In effect, the microbiome vastly extends our genome, giving us access to a tremendous bag of tricks we did not need to evolve ourselves.

So it made very good sense, evolutionarily speaking, for us to join forces with the microbes, which are simply more skilled than we are at all the ways of biochemically contending. During the two billion years of natural selection that bacteria have undergone before more complex multicellular creatures arrived on the scene, they managed to invent virtually every important metabolic trick known to evolution, from fermentation to photosynthesis. (According to Lynn Margulis, who until her death in 2011 was the microbiome's most eloquent human advocate, the only important biochemical innovations to come along in the billion years since then are snake venom, plant hallucinogens, and-this is a big one-cerebral cortices.) And one of bacteria's greatest tricks of all is to combine forces with other creatures, taking up residence in or on their bodies, possibly even their cells, trading various metabolic services for their upkeep.*

Researchers have identified several, but surely not all, of the services that resident gut microbes supply to their hosts. Though we've tended to think of bacteria as agents of destruction, they are, like other fermenters, invaluable creators as well. In addition to producing organic acids, the gut bugs manufacture essential vitamins (including vitamin K as well as several B vitamins), enzymes necessary to digestion, and a great many other bioactive compounds scientists are only just beginning to recognize. Some of these compounds act on the central nervous system, moderating our appet.i.te and the mechanisms that determine how we store fat.

Indeed, the microbiota may play an important role in regulating our weight. It has long been known that feeding antibiotics to livestock makes them gain more weight on the same amount of feed, and though the mechanism has not been identified, intriguing new clues are emerging. A group of researchers at Was.h.i.+ngton University in St. Louis discovered that the types of bacteria dominant in the gut of obese individuals (in both mice and humans) are very different from those found in slender people, and that the different species of gut bacteria metabolize food more or less efficiently. This suggests that the amount of energy we obtain from a given amount of food may vary depending on the kinds of microbes living in our gut. So might changing the composition of our gut bacteria in turn change our weight? Possibly: The researchers found that when they transferred bacteria from the gut of fat mice into germ-free mice, the germ-free mice gained nearly twice as much weight as when they received gut bacteria from skinny mice.* Other research has found that specific gut microbes, such as Helicobacter pylori, play a role in regulating the hormones that control appet.i.te.

Could it be possible that the microbiota also affects mental function and mood, as some of the fermentos I met in Freestone claimed? The idea no longer seems preposterous. A recent study performed in Ireland found that introducing a certain probiotic species found in some fermented foods (Lactobacillus rhamnosus JB-1) to the diet of mice had a measurable effect on their stress levels and mood, altering the levels of certain neurotransmitters in the brain. Precisely how the presence of a certain bacterium in the gut might affect mental function is unclear, yet the researchers found they could block the effect by severing the vagus nerve that links the gut to the brain. Studies like this one make you wonder if it might someday be possible to cultivate, or garden, our microbiota, altering its makeup to improve our physical and possibly also our mental well-being.*

Right now, of course, and for the last several decades at least, we have been a.s.siduously doing exactly the opposite: disordering the community of microbes in our bodies without even realizing it, much less with any sense of what might be at stake. Under the pressures of broad-spectrum antibiotics, a Pasteurian regime of "good sanitation," and a modern diet notably hostile to bacteria, the human microbiota has probably changed more in the last hundred years than in the previous ten thousand, when the s.h.i.+ft to agriculture altered our diet and lifestyle. We are only just beginning to recognize the implications of these changes for our health.

For some of us, the deleterious changes to our gut microflora begin at birth, the moment when we are first inoculated with the microbes that will accompany us through life. In utero, our bodies are sterile, but the microbially messy process of v.a.g.i.n.al birth exposes the baby to a set of bacteria that immediately begin to colonize its body. Children born by Cesarean section, a far more hygienic process, take much longer to populate their intestinal tract, and never acquire quite the same a.s.sortment of bugs. Some researchers believe this could help explain the higher rates of allergies, asthma, and obesity observed in children born by Cesarean.

The sanitized environment in which we try to surround our children is probably also taking its toll on their microbiota. Now widely accepted, the "hygiene hypothesis" holds that children need to be exposed to more bacteria, not fewer, in order to properly develop their immune system, so that it can learn to accurately distinguish between good and bad microbes. Without that training, the theory goes, the body is apt to mistake benign proteins, such as those in certain foods, for mortal threats, and react accordingly. The hypothesis explains escalating rates of allergy, asthma, and autoimmune disease in the developed world, as well as the curious fact that children reared in the microbially rich-some would say perilous-environment of a farm have fewer allergies and generally more robust immune systems.*

The average child in the developed world has also received between ten and twenty courses of antibiotics before his or her eighteenth birthday, an a.s.sault on the microflora the implications of which researchers are just beginning to reckon.* Like the pesticides applied to a farm field, antibiotics "work," at least in the short term. Yet as soon as you widen the lens from a narrow focus on the "enemy species," you see that that such blunt weapons inflict collateral damage to the larger environment, including, in the case of pesticides, the microbial community of the soil. Resistant bugs and various other health problems soon emerge; the soil's ability to nourish plants and help them withstand disease is also compromised, because the toxins have reduced the community's biodiversity and thereby compromised its resilience. As in the soil, so in the gut. The drive for control and order ends up leading to more disorder.

And then of course there is the diet, perhaps the most important factor in first establis.h.i.+ng and then maintaining the microbial community in our gut. The process begins with nursing, which shapes the gut flora in some unexpected ways. A mother's nipple harbors a community of lactobacilli, and it was recently discovered that the milk itself contains bacteria that may play a role in colonizing the baby's gut. But the most important contribution of mother's milk to the infant microbiota may be in encouraging the "right" kinds of bacteria to dominate it from the start. For years nutritionists were mystified by the presence in mother's milk of certain complex carbohydrates, called oligosaccharides, which the infant lacked the necessary enzymes to digest. Evolutionary theory argues that every component of mother's milk should have some value to the developing baby, or else natural selection would be likely to discard it as a poor use of the mother's precious resources. So why would she produce nutrients her baby can't metabolize? It turns out the oligosaccharides are there to feed not the baby but certain of its intestinal microbes: Their presence in the diet ensures that certain optimal species of bacteria, and specifically Bifidobacterium infantis, proliferate and get established before less savory characters gain a toehold.*

As nature's most perfect food-having been shaped entirely by natural selection-mother's milk has much to teach us, and not least these two crucial facts: that bacteria is good food, and that feeding the bacteria is as important as feeding the baby. Put in a more scientific way, the diet should include both "probiotics"-beneficial bacteria-and "prebiotics"-something good for those bacteria to eat. But for most of the last century, those of us living in the developed world have heeded neither of these principles.

To the contrary: We are, literally, "anti-biotic." We've worked hard to eliminate bacteria from the diet, by sterilizing our food, and, by processing it, we've removed much of the fiber-precisely that component of the diet of greatest value to the microbiota. With the exception of yogurt, live-culture foods have all but vanished from our plates. To take just one example, L. plantarum, the bacterium found in such abundance in most vegetable ferments, has been ubiquitous in the human diet since prehistoric times, along with all the vegetables it typically accompanied. But the so-called Western diet, with its refined carbohydrates, highly processed foods, and dearth of fresh vegetables, is downright hostile to fermentation: It preserves foods by killing bacteria rather than cultivating them, and then deprives our gut bacteria of much of anything good for it to ferment.

"The big problem with the Western diet," Stephen O'Keefe, a gastroenterologist at the University of Pittsburgh, told me, "is that it doesn't feed the gut, only the upper GI [gastrointestinal tract]. All the food has been processed to be readily absorbed, leaving nothing for the lower GI. But it turns out that one of the keys to health is fermentation in the large intestine." A diet as rich in fats and refined carbohydrates as ours may supply our bodies with plenty of energy, but the lack of fiber in the diet is, in effect, starving our gut and its microbial residents. O'Keefe and many others are convinced that the myriad intestinal disorders that have become common among people eating a Western diet can be traced to this imbalance. We have changed the human diet in such a way that it no longer feeds the whole superorganism, as it were, only our human selves. We're eating for one, when we need to be eating for, oh, a few trillion.

But intestinal problems may be the least of it. For more than a century now, medicine has recognized a link between this Western diet and the historically novel set of chronic diseases that now kill most of us in the West: heart disease and stroke, obesity, cancer, and type 2 diabetes. Populations that eat a Western diet consistently develop high rates of these diseases. What remains subject to debate is exactly what about this diet makes it so lethal: Is it the presence in it of some "bad" nutrient, such as saturated fat or refined carbohydrates or cholesterol? Or is it the absence from it of some essential "good" nutrient, like fiber or omega-3 fatty acids?

Any one of these nutrients, present or absent, might be the dietary culprit responsible for this or that chronic disease. But lately some researchers are beginning to suspect that the problem with the Western diet may be both less direct and more systemic, and that most if not all the important chronic diseases may have a similar etiology. Though none has yet dared use such an ambitious term, several scientists across several disciplines appear to be working toward what looks very much like a Grand Unified Theory of Diet and Chronic Disease. The theory turns on the concept of inflammation, something in which the human microbiota may turn out to play a crucial role.

A growing number of medical researchers are coming around to the idea that the common denominator of many, if not most, of the chronic diseases is inflammation-a persistent and heightened immune response by the body to a real or perceived threat. For example, the buildup of plaque in the arteries, once thought to be the result of saturated fat and cholesterol in the diet, now appears to be an inflammatory response, the arteries' attempt to heal themselves. Various markers for inflammation are common in people with "metabolic syndrome," the complex of abnormalities that predisposes people to cardiovascular disease, type 2 diabetes, and cancer, and which now afflicts 44 percent of Americans over the age of fifty. So what might be the source of these inflammatory responses, across so many organs and systems and people? One theory-and so far it is just a theory-is that the problem begins in the gut, with a disorder of the microbiota, and specifically of the gut wall. For when the integrity of the epithelium has been compromised, various bacteria, endotoxins, and proteins can slip into the bloodstream, causing the body's immune system to mount a response. It is the resulting inflammation, which affects the entire organism and may never subside, that over time can lead to any number of the chronic diseases that have been linked to diet.

That, at least, is the theory. It no longer sounds even the least bit crazy to me, but, then, maybe I've been spending too much time among the fermentos, people who believe that the cure for diabetes and whatever else that ails you is kombucha. It obviously can't be that simple. And yet the case for getting more live-culture foods in the diet (especially of our children) is already compelling and growing more so. Consider the research that has come out in just the past decade or so. Probiotics-beneficial bacteria ingested either in fermented foods or in supplements-have been shown to: calm the immune system and reduce inflammation;1 shorten the duration and severity of colds in children;2 relieve diarrhea3 and irritable bowel syndrome;4 reduce allergic responses, including asthma;5 stimulate the immune response;6 possibly reduce the risk of certain cancers;7 reduce anxiety;8 prevent yeast infections;9 diminish levels of E. coli 0157:H7 in cattle10 and salmonella in chickens;11 and improve the health and function of the gut epithelium.12

Much about the microbiota and fermented foods remains to be explored. Scientists still don't understand exactly how the probiotics in fermented foods achieve their effects. Only occasionally do they actually take up permanent residence in the gut. Some of them, notably L. plantarum, move in and adhere to the epithelium, helping to crowd out various pathogens and strengthen the gut wall. But other probiotic species appear to be only transient members of the microbial community. And yet, like visitors often do, they seem to leave their mark, contributing things of value-a useful gene or plasmid, a bioactive chemical, some "news" of the microbial environment out there-to the biota. Somehow, they seem to stimulate the local residents to better resist invasion by pathogens. A series of recent papers has demonstrated that even bacteria that are just pa.s.sing through can alter the genetic expression, and sometimes the genome, of resident gut bacteria, teaching them some new metabolic tricks.*

Taken together, the microflora may function as a kind of sensory organ, bringing the body the latest information from the environment, as well as the new tools needed to deal with it. "The bacteria in your gut are continually reading the environment and responding," says Joel Kimmons, a nutrition scientist and epidemiologist at the Centers for Disease Control and Prevention, in Atlanta. "They're a molecular mirror of the changing world. And because they can evolve so quickly, they help our bodies respond to changes in our environment."

Mysteries remain, obviously, but the case for eating live-culture foods seems strong, and perhaps strongest for fermented vegetables. For in addition to bringing large numbers of probiotic guests to the party (including such impressive characters as L. plantarum), the vegetables themselves also supply plenty of prebiotics-nourishment for the bacteria already there. So you won't be surprised to learn I have been busy at my pickling, working to perfect my sauerkraut and kimchi. Since they have been in the human diet for thousands of years, it makes sense that these fermented foods would by now have become tightly woven into our biology. We have coevolved with them, not just the plants, but the microbial species these ferments contain in such abundance, especially ones such as L. plantarum, which for all we know might be one of the unsung heroes of human health.

And yet it's not at all hard to see why it would take this long to recognize and appreciate the complexity of these foods and these relations.h.i.+ps-because that complexity is, literally, so hard to see. As with the microbiota of the soil, another fermenting universe of biological complexity that it closely resembles, the complexity of the gut microbiota is supremely difficult to comprehend. So much more than the sum of its unprepossessing parts, it has been, until very recently, invisible to the reductive lens of Western science, which has always been better at understanding individuals (pathogens, variables, elements, whatever) than communities. And then there is the fact that it utterly fails to conform to our ideas-including our aesthetic ideas-of what a system or an organ should look like. Let's face it, the kilogram ma.s.s of microbes living in our gut don't look like much. It doesn't help that we also find it disgusting.

Ferment II.

Animal

A dairyman I know from Wales, a man who with his son produces a remarkable cheddar, once told me that "everything" affects the quality and flavor of his cheeses, up to and including "the mood of the milker." This struck me as a nice romantic conceit, until I pressed him to explain how that might actually be so. "Well, it's really quite simple. If the milker is calm, the cow is calm. And a calm cow doesn't s.h.i.+t as much in the milking parlor, which means her milk will likely be cleaner. This is why the milk is always better when women do the milking."

Several things about this little story came as news to me, not least the disturbing fact that there might be any s.h.i.+t in milk, ever. The cheddar my friend makes is an organic raw-milk cheese, and I was a little alarmed by what seemed like his cavalier att.i.tude toward sanitation. Yes, you wanted as little manure in the milk as possible, he was suggesting, but the reality of a dairy farm is such that milk will never be perfectly sterile-and that isn't necessarily a wholly desirable outcome in any case. One of the reasons cheese makers swear by the superiority of raw-milk cheeses is the complex flavors contributed by the richly diverse bacterial cultures living in them. Where in the world did I think those came from?

In the intensifying struggle between the Pasteurians and post-Pasteurians, raw-milk cheese has emerged as perhaps the single most fiercely contested terrain. I have not given my friend's name here because his candor on the subject of s.h.i.+t-in-milk would probably bring the full force of the health authorities down on his little dairy farm. Live-culture sauerkraut and kimchi makers have not had reason to fear predawn raids from the Pasteurian police, but, rightly or wrongly, people selling raw milk and raw-milk cheese now do-they are bearing the full brunt of the war on bacteria. Raw-milk cheese makers are subject to predawn raids by the FDA, with SWAT teams brandis.h.i.+ng guns showing up on farms unannounced, pouring cans of fresh milk out onto the ground.

Milk was the first important food to be subject to "pasteurization" by law, beginning in Chicago in 1908. So perhaps it shouldn't surprise us that milk and cheese would become ground zero in the clash of worldviews between the public-health authorities-whose authority was founded on Pasteur's discovery of an invisible realm of disease-causing microbes-and those who would seek to renegotiate our relations.h.i.+p to the microcosmos.

In fact, both sides in this struggle have a compelling case to make, yet at the same time both sides seem blind to serious defects in their own arguments. As Pasteurians are quick to point out, the reason we first began pasteurizing milk (that is, heating it to 145F for thirty minutes, or 161F for fifteen seconds, in order to kill bacteria) is very simple: Raw milk was killing lots of people. Rich in sugars (such as lactose) and proteins (such as casein), milk is a perfect breeding ground for bacteria, and in the nineteenth century it became one of the princ.i.p.al vectors for the transmission of tuberculosis and typhoid. Pasteurization has saved thousands of lives.

Ah, but that was then, the post-Pasteurians reply. It is not at all surprising that milk was so badly contaminated in the nineteenth-century metropolis. In the days before refrigerated storage and transportation, fresh milk typically came not from cows in the countryside but from cows brought into the city. Here, they were confined to dark, dank cellars, where they were fed on brewery wastes and milked by wretchedly poor people carrying infectious diseases. No wonder raw milk could be lethal! Pasteurization is an industrial Band-Aid applied to an industrial problem. As long as cows are given a proper diet and good husbandry, it is unnecessary.

Yet even today, the Pasteurians respond, when most cows once again live on farms, their milk can be contaminated with pathogenic microbes, including such deadly (and novel) ones as E. coli 0157:H7 and Listeria monocytogenes. The fact is that raw milk, and the cheeses made from it, continue to kill a handful of people every year, and sicken a great many more. So why take chances when we have a proven technology to ensure the safety of our milk?

Reply the post-Pasteurians: People are also sickened by cheese and other milk products that have been pasteurized, a process that offers no guarantee of safety. Milk and cheese can be contaminated after pasteurization, and often are. Also, the cleanliness of dairying has only gotten worse under the regime of pasteurization; since dairy farmers know their milk will be sterilized after it leaves the farm and gets mixed with milk from countless other farms, they have less incentive to be scrupulous about hygiene.

Nowadays, the post-Pasteurians can cite in their support the hygiene hypothesis. This is perhaps their most devastating argument, though it, too, has unacknowledged weaknesses. According to the argument, the problem is not so much with the bacteria in the milk, which they're prepared to concede, but with the compromised immune systems of us milk drinkers-compromised (need it be said?) by years of misrule by the Pasteurians themselves, with their antibiotics, sterilized food, and sanitized child-rearing regimes. The Pasteurian drive for absolute control of the microbial realm has led to new vulnerabilities, reflected in antibiotic-resistant microbes and lethal new pathogens.

Instead of technology, the post-Pasteurians want us to put our faith in the microbes themselves and in striking a healthier, more tolerant relations.h.i.+p with them. They cite studies demonstrating that children who grow up drinking raw milk are measurably healthier than other children, with markedly lower rates of allergy and asthma.* Some of these children live in environments teeming with deadly pathogens, including E. coli and listeria, yet they don't get sick from them. The post-Pasteurians further point out that the best protection against bad bugs in milk or cheese is not the heavy hand of pasteurization but, rather, the countervailing influence of various "good" bugs, which pasteurization indiscriminately kills off. Milk and cheese are complex ecological systems that can, at least to some extent, defend and police themselves.

This proposition, I was about to learn, is by no means crazy. Sister Noella Marcellino is a cheese maker and microbiologist who would probably describe herself as a post-Pasteurian (though with an important caveat I will get to). In fact, one of the reasons she went back to school to become a microbiologist (she was in her thirties at the time and already an accomplished cheese maker) was so that she could scientifically test that very proposition.

The cheese nun, as she is inevitably called in the numerous profiles about her that have been published and broadcast, has been making a Connecticut version of a Saint-Nectaire since the late 1970s. Named Bethlehem, for the rural Litchfield County town that is home to Regina Laudis, her Benedictine abbey, Sister Noella's cheese is a raw-milk, semihard, fungal-ripened cheese made strictly according to ancient techniques that have been practiced in the Auvergne region of France since at least the seventeenth century. Sister Noella learned the techniques, which are usually closely held family or village secrets, from Lydie Zawislak, a third-generation French cheese maker who visited the abbey in 1977 at the invitation of the Abbess. Sister Noella had been attempting to make cheese from the abbey's surplus of milk, but found cheese making was a craft you couldn't learn very well from a book.

"So I began praying for an old French lady to come teach me," she recalled. Her prayers were answered when Lydie came to visit. (Lydie wasn't old, however.) Monasteries have historically been places where traditional food-making techniques, many of them involving fermentation, have been scrupulously perfected and preserved; Lydie was willing to entrust her family's Saint-Nectaire recipe to Sister Noella and the abbey.

Several things about that centuries-old recipe were guaranteed to give an American health inspector conniptions; indeed, the raw milk may have been the least of it. No, what gave the health inspector fits was the old wooden barrel in which the milk is curdled, and the wooden paddle used to stir the curds, which was carved (with two cutouts in the shape of a cross) from beech wood by a craftsman in the Auvergne. Cheese in America is always made in stainless-steel vats with stainless-steel tools. Easy to clean and disinfect, stainless steel is the Pasteurian's material of choice. Once scrubbed, its perfectly smooth, machine-tooled surface gleams, offering an objective correlative of good hygiene. Wood on the other hand bears all the imperfections of a natural material, with grooves and nicks and pocks where bacteria can easily hide. And indeed the inside of Sister Noella's cheese-making barrel wears a permanent cloak of white-a biofilm of milk solids and bacteria. You could not completely sterilize it if you tried, and part of the recipe for Saint-Nectaire involves not trying: Lydie told Noella that between batches the barrel should only be lightly rinsed with water.

So it happened that in 1985, after raw-milk cheese was implicated in the deaths of twenty-nine people in California, the state health inspector demanded that Sister Noella get rid of her wooden barrel and replace it with stainless steel.

Sister Noella regarded her wooden barrel and paddle not merely as quaint antiques, but as essential elements of the traditional cheese-making process. The fact that the wood harbored bacteria was actually a good thing. She preferred to think of them not as contaminants but "more like a sourdough culture." So Sister Noella designed an experiment for the benefit of the health inspector. From the same raw milk, she made two batches of cheese, one in the wooden barrel, and the other in a stainless-steel vat. She deliberately inoculated both batches with E. coli.

What happened next was, at least to a Pasteurian, utterly baffling: The cheese that had been started in the sterile vat had high levels of E. coli, and the cheese made in the wooden barrel had next to none. Just as Sister Noella had expected, the "good bacteria" living in the barrel-most of them lactobacilli-had outcompeted the E. coli, creating an environment in which it couldn't survive. As had happened in my sauerkraut, the good bugs, and the acids they produced, had driven out the bad. The community of microbes in the raw-milk cheese was, in effect, policing itself.

Sister Noella had eloquently made her point: The traditional makers of something like Saint-Nectaire have, without realizing it, been practicing a kind of folk microbiology, developed over generations by trial and error, and it works to help keep them safe. Wood, and the bacteria wood harbored, formed an indispensable part of this process, and, ironically enough, introducing a more hygienic material only made the process less hygienic.

Presented with the results of this elegant little experiment, the health inspector relented, allowing Sister Noella to keep her wooden barrel. More than a quarter century later, she is still making cheese in it.

Sister Noella has become something of a hero to the post-Pasteurians. A nun's habit and a Ph.D. in microbiology-the abbey sent her to the University of Connecticut so that she might better be able to defend her cheese, both from pathogens and from public health authorities-are an unbeatable combination, and, so far at least, the FDA has thought better than to mess with Sister Noella, even as the agency has come down hard on many other raw-milk cheese makers. Yet when I visited her at the abbey recently, hoping to learn from her how to make cheese, she was more equivocal on the subject of raw milk than I expected.

"I'm not quite the champion of raw milk that people think I am," she explained, as she showed me how to use the notorious wooden paddle to gently corral pearly white curds into a ma.s.s. "People say, Raw milk was fine for our grandfathers so why not for us? Because you are not your grandfather, and those are not your grandfather's microbes. Some of them have gotten much nastier. We're dealing with a different reality. So we can't say a raw-milk cheese is automatically safe. It has to be made with care."

What Sister Noella was suggesting was that many of the post-Pasteurians were in fact pre-Pasteurian in their a.s.sumptions, harking back to a biologically more innocent time, when people were hardier and the bugs more benign. We have no choice but to take account of history-including the impact of the Pasteurian regimen on our immune systems and on the microcosmos.* The techniques of traditional cheese making still offer a measure of protection, but America's cheese culture is fairly young, and not everyone making cheese has mastered them.

Sister Noella and I were working together in the cheese room, which sounds grander than it is: a low-ceilinged kitchen with a few extra work sinks and a bulk tank for milk, in the back of a clapboard house on the grounds of the abbey. In the fenced pasture behind it, the abbey's Dutch Belted cows were lounging on the ground, looking very much like exceptionally fat Oreo cookies. I had spent the night at the abbey, sleeping, or trying to, on a microscopic sliver of bed in a microscopic cell upstairs in the stoplight-red converted barn that houses the tiny number of men in residence-altar boys, interns, and guests. Except when the nuns were at work-in the garden tending vegetables, in the barn caring for the cattle, in the shop working wood or leather or iron, or in the dairy making cheese-they were supposed to have no contact with men. I had spotted Noella earlier that morning at ma.s.s, where she and the sisters were singing some of the most hauntingly ethereal music I'd ever heard, from behind the grille of bars that symbolizes their detachment from men and the outside world.

But although life at the abbey was as hushed, solemn, and regimented as you might expect, Sister Noella herself exhibited none of those qualities. To the contrary: She enjoys nothing more than making people laugh, and the powerful beam of her smile is infectious. There was a lot of joking around in the cheese room, some of it fairly crude. Apart from her habit and wimple (and while at work the sisters can wear a special habit made from blue denim), there was little to remind you she was a nun.

Noella grew up in a big Italian family outside Boston (her older brother cofounded the fifties nostalgia band Sha Na Na), and after a difficult year at Sarah Lawrence-she enrolled in 1969, at the height of the messy ferment of the sixties counterculture-she embarked on a quest to find a more sympathetic, and more structured, environment. She visited Regina Laudis at the suggestion of a friend in 1970, and three years later she entered the abbey as a postulant-the first step on the long road to becoming a nun.

Cooked - A Natural History of Transformat Part 19

You're reading novel Cooked - A Natural History of Transformat Part 19 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


Cooked - A Natural History of Transformat Part 19 summary

You're reading Cooked - A Natural History of Transformat Part 19. This novel has been translated by Updating. Author: Michael Pollan already has 629 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com