The Golden Age Of Science Fiction Vol Ix Part 145
You’re reading novel The Golden Age Of Science Fiction Vol Ix Part 145 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
"You will notice a very large number of peaks in this and the other neighbouring ranges--in fact, several thousands have been marked on our large maps.
"Cutting diagonally in a north-westerly direction, completely through the Alps, you will notice a long and deep valley. This is known as the 'Great Alpine Valley,' and is over eighty miles long, and varies from about three miles to six and a half miles in width. At the eastern end it is some 11,000 feet deep, debouching on to the plain in several comparatively narrow pa.s.ses, whilst at its north-western extremity it is very shallow, and emerges on to what is known as the Sea of Cold, which covers an area of about 100,000 square miles. This valley seems to afford another example of formation by the action of water.
"Amongst the three thousand peaks comprised in the Apennine range just below the Alps, are several mountains of considerable alt.i.tude," I remarked, pointing out Mount Huygens, nearly 20,000 feet high, Mount Hadley, 15,000 feet, and Mount Woolf, 12,000 feet in height. "This range curves round towards the east, and finishes with a fine ring-plain called Eratosthenes--some thirty-seven miles in diameter, with a floor depressed 8000 feet below the lunar surface. It encloses a central mountain, and on the east wall there is one peak which rises 16,000 feet above the floor.
"The ranges in this part of the moon are, perhaps, more like those on our earth than others to be found on its surface, but much more wild and rugged.
"Eastward and northward of these ranges is the Sea of Showers, on which there are several fine ring-mountains and walled plains--notably Autolychus and Aristillus, two very perfect ring-mountains some 9000 feet high.
"One of the most striking, on account of its size and situation, is that large one which is called Archimedes, and is about fifty miles in diameter; and you will notice that a rugged ma.s.s of mountains and high hills extends from it to a distance of over a hundred miles on the south. The floor of this walled plain is only about 600 feet below the general level, and the mountain walls average about 4000 feet in height; but there is at least one peak some 7000 feet high.
"You will see a little below and westward of Archimedes the commencement of a system of large cracks or creva.s.ses in the lunar surface which are known as 'rills.' Many such systems are found in various parts of the moon; some of the cracks are comparatively shallow, but, according to Professor Langley, others are known to be at least eight miles deep, and may be infinitely deeper, though I cannot say I understand how these great depths have been arrived at. The length of the cracks varies from a few miles to over three hundred miles, and from a few hundred yards to some miles in width. They are attributed partly to volcanic action, but mainly to the contraction of the crust of the lunar globe as it became cold. Being so much smaller, the moon would cool much more rapidly than the earth, and the disruptive effects would necessarily be greater."
John here touched my arm, and pointing to some mountains on the borders of a large elongated oval area, close to the north-western terminator where the sun was setting, asked me what they were. I explained that the dark area was known as the Mare Crisium, or Sea of Conflicts, and is possibly the deepest of the large lunar depressions.
"It is about 280 miles long from north to south, and 355 miles wide from east to west, but, owing to its position, the width is seen from the earth very much foreshortened, so that it really looks nearly twice as long as it is wide. It contains an area of about 75,000 square miles, thus being as large as the combined area of Scotland and Ireland, and the five largest northern counties of England. It is surrounded by mountains, some being over 11,000 feet high, reckoning from the dark floor."
I drew their attention to Proclus--a ring-mountain on the eastern side of this sea--which is about eighteen miles in diameter, and the second brightest of the lunar formations. "From its neighbourhood several bright streaks diverge in different directions, two extending a long way across the dark area, and there is a longer one striking towards the north and another towards the south at an angle of about 120 degrees with each other.
"Seen through the telescope, these ray-streaks often appear very brilliant under a high sun, looking in fact very like electric search-lights; though I notice that the Rev. T.W. Webb has rather curiously remarked that these particular streaks are not very easily seen. Similar ray-streaks, many enormously longer than these, are found in various parts of the lunar surface, but their exact nature and origin has never yet been definitely settled. They only come into view when the sun is beginning to be high up in the lunar sky, and the higher the sun, the brighter the rays appear. Some of the shorter ones are ridges, but this is evidently not the case with the others, for they cast no shadows, as ridges would when the sun is low. Very many radiate from a large ring-mountain called Tycho, in the southern hemisphere; and one of them extends, with some breaks, nearly three thousand miles, pa.s.sing northward over the Sea of Serenity and finally disappearing on the moon's north-western edge, or 'limb,' as it is termed.
"Professor Pickering a.s.sumes that these rays were caused by volcanic dust or other light reflecting material emitted from a series of small craters, and states that they are really made up of a series of short rays placed or joined end to end. What I have observed myself seems to bear out this latter statement; but the opinion I have formed as to their origin differs from the theory of Professor Pickering. It seems to me more probable that the volcanic dust was carried by a strong wind, split up into two or more separate currents by a succession of peaks. The wind currents swept clean the area over which they actually pa.s.sed, but dust fell or drifted in the lines between the currents. Exactly the same thing may be observed in connection with snow-storms on our earth when accompanied by a high wind. One part of the earth's surface will be swept clean by the wind current, whilst a long line of the adjoining surface is covered with a thick deposit of snow. I have also noticed that where the ray-streaks impinge upon a mountain, or ring, there is an appearance of spreading out and heaping up of the bright material very much as snow would be spread out or drifted up in similar situations on the earth."
M'Allister here interrupted with the remark that, when we were approaching the moon, he had particularly noticed that all appearance of the face of the "man in the moon" had vanished. He said he had expected to see that more distinctly as we got nearer.
"That would not be the case, M'Allister," I answered. "The resemblance to a human face which we see from the earth is caused by the combined effect of the bright and dusky areas on the lunar surface as seen from a distance. The depressed dark areas, which we call seas, form the eyes, nose, and mouth of the face, but when we had approached nearer to the moon the details of the surface configuration stood out so much more distinctly that they entirely obliterated the general effect of the markings as seen from a distance."
"Professor," exclaimed John, "I have read that before telescopes were invented it was thought by many that the markings seen on the moon were really the features of our own earth reflected by the moon as in a mirror. Is that correct?"
"Oh yes, John," I said. "It seems to have been a fairly general belief in many parts of the world, and travellers tell us that, even within very recent times, they have found in some of the more out-of-the-way parts of the world that the same idea is still held by uneducated people!"
Objects of interest being so numerous on the lunar surface we could only give a comprehensive glance at many of them, and as we had so many places to inspect, I now gave M'Allister the order to steer eastward.
He accordingly moved his switches and the Areonal quickly pa.s.sed over the Sea of Tranquillity, which has an area of 140,000 square miles; then over the Sea of Vapours, a smaller area, parts of which have a dusky green tint, from whence to the northward we had a view over the Sea of Serenity, another deep depression nearly as large as the Sea of Tranquillity, and much of which is a light green colour.
Then we came again to the Sea of Showers, a large "sea" having an area of 340,000 square miles; and, still moving eastward, the great lunar "Ocean of Storms" soon came into view. This covers a very large portion of the eastern and north-eastern part of the moon's surface, and, with all its bays and indentations, is estimated to be two million square miles in extent.
I, however, again reminded them that, although these areas are termed seas and oceans, no water exists there now, whatever may have been the case in the long distant past. They are now only large depressions, and not often level but intersected by hills, ridges, and even mountains.
As we pa.s.sed along I called their particular attention to the magnificent "Bay of Rainbows" on the north-eastern coast of the Sea of Showers. "From Cape Laplace (9000 feet high) on the western extremity, to Cape Heraclides (4000 feet high) on the eastern extremity, this great bay is about 140 miles across, the depth of its curvature being over eighty miles. It bears a very strong resemblance to many large bays on our sea-coasts in various parts of the world, but I am not aware of any such bay which is bordered by a ma.s.s of such lofty mountains as this is.
"We are looking at it now under a high sun, but when the sun has only just risen sufficiently high to illuminate all those high mountains, whilst the lower surroundings are still in shadow, the great bay presents in the telescope the appearance of a brilliant luminous arch springing from the lighted part of the moon and extending far out over the dark part of the disc.
"Farther eastward, and lower down on the Ocean of Storms, you will observe what is admitted by all to be the very brightest large formation upon the moon, viz. Aristarchus--a ring-plain nearly thirty miles in diameter, the floor of which is 5000 feet below the surface level. It possesses a central mountain, very difficult to measure on account of the general brightness, but believed to be about 1300 feet high. Well-defined terraces are seen on the mountain walls enclosing the area, and many external ridges are connected with the walls, especially to the south. This formation is evidently covered with some substance which reflects light to a greater extent than that on similar formations; indeed it appears so bright that when the moon is new and the whole of this part of the disc is dark, Aristarchus can still be seen with a telescope, and this gave rise in the past to the idea that it was a volcano in actual eruption. The explanation is, however, more prosaic, because the mountain is really brought into view by earths.h.i.+ne on its bright covering. When the moon is new the earth is almost fully lighted on the side toward the moon, and sheds a faint light on the dark portion of its disc, thus producing the phenomenon known as 'the old moon in the new moon's arms.'
"Close to Aristarchus you will notice another ring-plain, which is called Herodotus, about twenty-three miles in diameter, with a floor 7000 feet depressed; but this formation is not nearly so bright as its neighbour. That high plateau between them is notable on account of the T-shaped cleft in it, which runs into that other long zig-zag cleft (in some parts two miles wide and 1600 feet in depth), whose direction changes abruptly several times in its length of over one hundred miles.
"Turning from this towards the south-west you will see the most majestic formation to be found upon the moon--the great ring-plain called 'Copernicus,' after the founder of our present system of astronomy. It is about sixty miles in diameter, only roughly circular in shape, and as it stands isolated upon the great ocean-bed it is most favourably situated for observation. A large number of very high ridges, separated by deep valleys, radiate from it in all directions to a distance of hundreds of miles, presenting the appearance of a grand system of b.u.t.tresses to the mountain walls. These walls are high, and contain a very large number of peaks which, when seen through the telescope as they catch the sunlight, look like a string of bright pearls s.h.i.+ning on the border of the ring. A peak on one side is 12,000 feet in alt.i.tude, on the other side is one only 1000 feet lower, whilst, rising from near the central part of the floor, are no less than five small mountain peaks. Owing to its size, brightness, and isolated position, this splendid ring-mountain can be seen from the earth without the aid of a gla.s.s; but even a field-gla.s.s will reveal much in this and similar formations which cannot be detected by the unaided eye.
"The Rev. T.W. Webb has termed Tycho, in the southern hemisphere, 'the Metropolitan Crater of the Moon,' but, in my opinion, Copernicus is, owing to its position and grandeur, much more worthy of that dignity. Tycho is fine in itself, but is not so favourably situated, being surrounded by other formations somewhat in the same way as St. Paul's Cathedral is surrounded and shut in, for the most part, by other and meaner buildings.
"How much more should we appreciate the splendid proportions and majesty of our Metropolitan Cathedral if we could view it as an isolated building with a fine open s.p.a.ce all around it!"
"I quite agree with that, Professor," remarked John, "and I have always thought it a great pity that Sir Christopher Wren was not allowed to carry out his original plan in this respect."
We were looking at the Carpathian range of mountains just to the northward of Copernicus, when M'Allister touched my arm, exclaiming, "Look, Professor, at all those tiny craters near the western side of Copernicus. Why, there are so many of them that the ground for miles round looks like a honeycomb, and in some places there are straight rows of them!"
"Yes," I said, "this part of the lunar surface is simply riddled with tiny craterlets, and some of them are utilised as tests for the definition of our telescopes. I have heard it remarked that a map of this part of the moon presents almost the appearance of the froth on a gla.s.s of stout when it has settled down, the very numerous tiny air-bubbles of different sizes representing the craterlets; and really it does bear such a resemblance.
"Almost due east of Copernicus is another bright and isolated ring-plain named Kepler, after the celebrated astronomer. This is some twenty-two miles in diameter and surrounded by very bright streaks of light, extending in some directions over seventy miles, the whole nimbus of light covering an area of nearly ten thousand square miles. These really are streaks, not ridges, for, as you will see, nearly all the surface surrounding this formation is flat and level.
"Some of the streaks from Kepler radiate in the direction of Aristarchus, others towards Copernicus, cutting right through the rays from those formations. From this it is gathered that Copernicus was formed first, then Aristarchus, and Kepler still later on in the moon's history.
"The surrounding wall of Kepler is comparatively low with respect to the lunar surface level, but the depth of the crater is nearly ten thousand feet below the mountain peaks. The whole formation is covered with the same light-reflecting material as the streaks which surround it."
CHAPTER VI.
THE SCENERY OF THE MOON'S SOUTHERN HEMISPHERE.
I now directed M'Allister to steer across the lunar equator into the southern hemisphere, and our attention was soon attracted by a very large walled plain on the eastward side of our course.
John asked me what it was called, and I explained that it was named Grimaldi, being also well known to observers as the darkest tinted of all the large lunar formations. As seen from the earth it appears a narrow ellipse, but we could see its full width, which is 129 miles, the length being 148 miles. It is also noteworthy as one of the few plains which are convex in section, and it is so large that its area is equal to the combined area of the whole of the counties of England south of the line of the Thames, including Cornwall.
I showed M'Allister this formation on our map, where it appears only a narrow ellipse in consequence of the moon's curvature, and pointed out how very different was its appearance now we could see over its whole extent. Other formations nearer to the moon's limb appear still more foreshortened when viewed from the earth.
John here remarked that "these large ring-plains covered immense areas, and, now that we could actually see them, their magnitude was more impressive than anything we could have imagined from merely hearing or reading about them."
"Yes, John," I said, "from our alt.i.tude of more than ten miles above the lunar surface we command a much more extensive view and gain a better knowledge of details than we could obtain even if we landed on the moon. For instance, if we could stand down in the centre of one of those very large rings, we should imagine we were in the midst of a boundless open plain. The mountains all around us would be so distant that, owing to the sharp curvature of the lunar sphere, they would all be below the horizon, notwithstanding the fact that many of them are several thousands of feet in height. So, for all we could see of them, those mountains might be non-existent.
"In the case of somewhat smaller rings we might perhaps see, here and there above the horizon, just the topmost peaks of some of the more lofty mountains."
M'Allister was now struck with an idea, and exclaimed, "Professor, I notice that many of these great walled plains are very flat, and I should think they would make fine golf-links, for there would be plenty of room to send the ball flying!"
"Undoubtedly," I answered, "you would have plenty of s.p.a.ce for that; and I can tell you that you would be able to send the ball flying six times as far as you could on the earth with the same expenditure of force, because the moon's gravitation is only one-sixth of that of the earth."
"That would be grand," said M'Allister. "I should like to have a few turns at golf on the moon."
"Ah, but you would also have extra long tramps after your ball," I told him, "so you would get plenty of exercise; but, for the reason already mentioned, you would be able to get over the ground six times as easily."
"Well, Professor, I should not mind the distance in those circ.u.mstances," he answered jauntily.
"Perhaps you like jumping exercise too," I said. "Only fancy, M'Allister, if you wanted to jump across one of those narrower cracks! Why, if you could jump a distance of ten feet on the earth, you could jump sixty feet on the moon just as easily! Some of our athletes have jumped a length of twenty-six feet, so the same persons could with equal ease jump 156 feet on the moon! What do you think of that for a long jump?"
"Heh, Professor," he replied, looking rather bewildered, "what a jump! Why, I should think the mon was never coming down again!"
"I say, though, M'Allister, after all I am inclined to think you would not find golf on the moon altogether a pleasant game," said John.
"Why not, mon?" inquired M'Allister.
"Well," answered John, "I was thinking that if you sent your ball flying into one of those cracks which are several miles deep you would find yourself eternally 'bunkered,' for no niblick ever made would get you out of that."
M'Allister laughed so heartily at this idea of John's that we both joined in his mirth; then I recommended him to wait until we reached Mars if he wished to enjoy a game of golf, for there he would be sure to find enormous stretches of level ground.
[Ill.u.s.tration: From a coloured drawing by M. Wicks Plate III CHART OF THE MOON, SHOWING THE PRINc.i.p.aL FORMATIONS SEEN ON ITS SURFACE.
The dark areas are termed seas, though there is no water on the moon. The many small rings are ring-mountains and ring-plains. (The North Pole is at the top.)]
[Ill.u.s.tration: Plate IV INDEX MAP TO CHART OF THE MOON.
1. Bay of Rainbows 2. Plato 3. Sea of Cold 4. Alps Mountains 5. Great Alpine Valley 6. Ca.s.sini 7. Autolycus 8. Aristillus 9. Archimedes 10. Timocharis 11. Lambert 12. Euler 13. Sea of Showers 14. Aristarchus 15. Herodotus 16. Ocean of Storms 17. Copernicus 18. Apennine Mountains 19. Sea of Serenity 20. Haemus Mountains 21. Sea of Conflicts 22. Proclus 23. Sea of Tranquillity 24. Sea of Fertility 25. Hevel 26. Kepler 27. Grimaldi 28. Flamsteed 29. Bonpland 30. Ga.s.sendi 31. Sea of Vapours 32. Hipparchus 33. Albategnius 34. Ptolemaeus 35. Alphonsus 36. Arzachel 37. Theophilus 38. Cyrillus 39. Catherina 40. Sea of Nectar 41. Langrenus 42. Vendelinus 43. Petavius 44. Schickard 45. Wargentin 46. Tycho 47. Maurolycus 48. Clavius 49. Newton 50. Straight Wall 51. Sea of Moisture 52. Sea of Clouds]
Proceeding on our tour of inspection, we crossed the Ocean of Storms to a point near the central part of the lunar surface, and I showed them the fine walled plain called Ptolemaeus. This is 115 miles in diameter, and contains an area as large as the combined areas of Yorks.h.i.+re, Lancas.h.i.+re, and Westmorland, its highest peak being 9000 feet in alt.i.tude. It forms the most northerly of a line of walled plains, the most southerly being Arzachel, which is sixty-six miles in diameter, and has a very depressed floor; while one peak on the walls rises to a height of 13,000 feet.
Pa.s.sing farther west, we next examined another splendid group of three ring-mountains, arranged in a line running nearly north and south, viz. Theophilus, Cyrillus, and Catherina. The first is the most northerly, and is about sixty-four miles in diameter, with several very high peaks--one rising as much as 18,000 feet, and two on the opposite side being 16,000 and 14,000 feet high respectively. Even the central mountain is very large in area, and 6000 feet high. "That," I remarked to M'Allister, "is nearly half as high again as Ben Nevis, the highest mountain in Scotland, which is, after all, only 4400 feet high."
"Ben Nevis, Professor, is 4406 feet high!" corrected M'Allister.
"That's right, M'Allister," said John, clapping him on the back, "stick up for bonnie Scotland, and don't let her be robbed of that six feet of mountain!"
Proceeding, I then said that Cyrillus, the middle ring, was, as they could see, very irregular in shape; and the walls were in some parts very much broken and damaged.
Catherina is the largest of the three, being over seventy miles in diameter, and its highest peak is 16,500 feet in alt.i.tude.
I should have liked to have shown them the splendid double-walled plain called Petavius, which has a convex floor some 800 feet higher in the centre than at the edges. We were, however, too late both for that and Langrenus, another fine formation on the same meridian, for the sun had set upon them and they were in darkness, so it was no use going any farther in that direction.
We now directed our course over the Sea of Clouds till we arrived at what is known as the "Straight Wall."
"M'Allister," I said, "that ought to interest you, for there is a somewhat similar formation in Scotland. You see this is an escarpment, or cliff, over sixty miles long, and varying from about 600 feet to 900 feet in height.
"This cliff is one of the best known examples on the moon of what in geology is termed a 'fault,' indicating either that one part of the general surface has been greatly elevated, or that the adjoining part has been depressed. We have many examples of such 'faults' on the earth--for instance, one runs a long way across Scotland, from Stonehaven round to Helensburgh, between the Highlands and the Lowlands, and is about 120 miles in length. That is about twice the length of the Straight Wall; so you see that Scotland can beat the moon in that respect!"
This brought M'Allister up to the scratch. "Scotland," he exclaimed excitedly, "can hold her own in most things! Why, mon, the empire is indebted to her for the finest statesmen, the cleverest lawyers, the best engineers and scientists, and, allow me to say, the bravest soldiers in the whole world! Scotsmen go everywhere, and can do anything!"
"Oh yes, M'Allister," said John, with a laugh, "and a Scotsman has got to the moon! but, please, do not forget that two Englishmen planned the trip, and devised the means of accomplis.h.i.+ng the journey!"
M'Allister smiled a rather wintry smile, and then subsided. John was a bit too smart for him that time.
Pa.s.sing on, we inspected the large cleft running parallel to the Straight Wall, and the small mountain close by named after Birt, the well-known selenographer. We then crossed the Sea of Clouds again, and had a long look at the great system of straight clefts near Campa.n.u.s and Hippalus, together with the fine walled plain Ga.s.sendi, the floor of which is at some parts 2000 feet above the lunar surface. I had often studied this through the telescope, as it is a most interesting formation.
"Well, Professor," remarked M'Allister, "I have travelled nearly all over our own world, but in all my journeyings I have never seen such wild and rugged scenery as I have during the few hours we have been pa.s.sing over the moon. The mountains seem to be split and rent in all directions, especially where there are volcanic craters in the neighbourhood--and, really, they seem to be everywhere; while landslips are very numerous, and the mountain pa.s.ses are extremely rugged and gloomy."
"Yes," I replied, "my telescopic observations had prepared me for a great deal, but the weird ruggedness of the lunar scenery exceeds all my antic.i.p.ations."
"What is the explanation of it all?" M'Allister inquired.
"I should think, M'Allister, that much of it was originally caused by the extreme violence of volcanic outbursts," I answered; "but the excessive expansion and contraction, resulting from the alternate spells of intense heat and intense cold to which the moon is continually exposed, will account for the formation of many of those tremendous chasms and precipices which we see everywhere around us, as well as for the huge mounds of dislodged rocks and debris, which are piled up in such chaotic confusion on the ledges of the mountains and round their bases.
"On the earth such debris would very soon have become smoothed by atmospheric erosion, the interstices would have been filled up with dust and soil, while the growth of vegetation would have added a new charm to the effect.
"You have seen the great landslip in the Isle of Wight! When it fell all was wild desolation, but it has become covered with such a luxuriant growth of vegetation that it now presents a scene of beauty.
"On the moon, however, there is neither atmosphere, rain, nor moisture to produce weathering of the rocks or to encourage the growth of vegetation; so the rocks remain just as sharp, rugged, and bare as they were ages ago when they were first split off from the mountains.
"No doubt very large ma.s.ses of rocks are still frequently being dislodged, and if we could see them falling from the upper part of a mountain, rebounding along the spurs, with fragments flying in all directions and ultimately das.h.i.+ng to pieces at the base, it would seem to us most uncanny not to hear the slightest sound arising from all this apparent commotion. Without an atmosphere, however, no sound could be produced, no matter how many thousands of tons of rock might fall to the ground.
"Tremendous changes of this nature may be happening on the moon, but our telescopes are not powerful enough to enable us to see the results. They would have to cover an area of miles to be noticeable, unless they presented some particularly striking configuration."
"Professor," exclaimed M'Allister, "how is it that all the shadows on the moon are such a dense black and so sharply defined at the edges?"
"That," I exclaimed, "is entirely owing to the absence of the atmosphere. On the earth, even at night time, some light is diffused by our atmosphere, and shadows are never dense black even when thrown by a bright sun. On the moon it is black darkness everywhere outside the direct rays of the sun, and there is no gradual diminution of the darkness about the edges of shadows such as we see on the earth. The only mitigation of the blackness is seen where some light is reflected across from the rocky walls on which the sun is s.h.i.+ning.
"In those deep recesses down at the bases of the mountains the cold must be most intense and the darkness truly awful. It all looks very nice when the sun is s.h.i.+ning, but appearances are often deceptive, and do not improve on a closer acquaintance."
We could not have landed upon the moon if we had desired to do so, for no provision had been made for a supply of air by means of helmets and other apparatus. I kept my own counsel in this matter, as I had very good reasons for discountenancing any proposal to investigate the lunar scenery too closely.
By a curious coincidence, not long after this conversation we had ocular demonstration of the fact that the moon is liable to changes from other agencies than those of expansion and contraction.
We were looking at some distant mountains which were in the full suns.h.i.+ne. Suddenly a dark shadowy looking ma.s.s shot across the sky and struck one of the mountain peaks some distance down from the top. The peak seemed to be immediately demolished, and vanished from our sight!
M'Allister gazed spellbound; but John excitedly exclaimed: "Did you see that, Professor? One moment the peak was there, and the next moment it was gone!"
"Yes," I said. "Undoubtedly that dark shadow was a large meteoric stone. Many have fallen on our earth at various times, some being tons in weight. Usually, however, they are so small that on entering our atmosphere they become fused by the friction and changed to dust. Larger ones are partially fused, and often split into fragments in the upper air. The moon, having no atmosphere, is quite unprotected in this respect; and meteorites moving at enormous speeds, probably over forty miles in a second, travel unchecked and unaltered in character until they strike the lunar surface. It is estimated that immense numbers constantly enter our atmosphere and are destroyed; but the moon must be continually exposed to bombardment by meteorites of considerable size.
"Many of our s.h.i.+ps have been lost at sea in calm weather, and their fate has remained a profound mystery; but it is not at all improbable that some of them have been destroyed by large meteorites, for several instances are recorded of s.h.i.+ps having very narrow escapes from these dangerous missiles from outer s.p.a.ce."
Pa.s.sing on towards the south-west, we had a long look at the magnificent formation named Tycho. It is a ring-plain nearly fifty-six miles in diameter, the mountain walls having some peaks over 17,000 feet in height. I drew their attention to the long bright ray-streaks which radiate in all directions for many hundreds of miles from the neighbourhood of this formation, to which I alluded when we had been looking at the rays from Proclus. Tycho and these bright streaks can be seen from the earth when the moon is full without the aid of a telescope, if one possesses good eyesight.
An enormous number of ring-plains and ring-mountains exists all over the southern half of the moon's disc; in many cases there are rings within rings, and others where they have overlapped or cut into previously formed rings.
Moving almost due south, we pa.s.sed the large but partially ruined walled plain known as Maginus. This ring has a floor which is no less than 14,000 feet below the lunar surface. We then arrived at that favourite object for telescopic observers which is named Clavius. This is an enormous ring-plain, being over 142 miles in diameter, and encloses an area of 16,000 square miles, thus being half the area of Scotland. It has a very depressed floor, and some of the mountains are 16,000 to 17,000 feet in alt.i.tude.
Farther on, and close to the south pole, we saw the very deepest of the lunar walled plains, which is named after Newton, who possessed probably the deepest intellect of any of our astronomers. A smaller formation south of Plato was originally named after him, but was not considered worthy of a man of his scientific eminence, so the name was transferred to the formation we were looking upon. It is about 143 miles long and very irregular in shape, and its depth is about 24,000 feet--so deep, in fact, that the sun's light never reaches to the bottom; thus, when we look at it from the earth, the floor is always in shadow.
The Leibnitz Mountains, unfortunately, were not visible, as the sun had set upon them. I, however, mentioned that this range comprises several peaks which are believed to be the highest on the lunar surface, reaching as they do an alt.i.tude of 30,000 feet, and, according to some measurements, 40,000 feet. They are very difficult to measure, owing to the fact that they are really situated on the farther side of the moon, extending east and west of the south pole, and are only occasionally brought into view by the moon's libration; even then they are seen in profile, and so situated that they cannot be measured with certainty. They are, however, so high that they blunt the southern cusp of the moon when it is in crescent form.
I now directed M'Allister to turn the vessel in a north-easterly direction, and we moved across to the last objects which I proposed to examine. One was the large walled plain "Schickard"--about 135 miles in diameter--which encloses several other rings; the other, which lies to the south-east of it and close to the moon's south-eastern limb, is probably the most unique object on the lunar surface. As we gazed upon it I explained that the formation, which is known as "Wargentin," would probably in the usual course of events have been a ring-plain about fifty-four miles in diameter, but it really is a high plateau of that size, with very low ramparts. It is evidently a ring-plain which became filled to the brim with lava, or mud, that welled up from the interior of the moon; and the mountain walls, being exceptionally strong and without any breaks or gaps, withstood the enormous pressure of the lava, which therefore solidified and formed the great plateau as we now see it. The low ramparts, which we noticed here and there, are really the isolated peaks and ridges of the mountains forming the walls. This is the only known instance of such a formation; but probably others would exist had not the walls of the rings given way under the pressure of the lava. The walls of several ring-plains have been quite carried away, and, in some cases so obliterated, that it is now difficult to make out the original shape of the rings.
Having taken a last look at this unique object, I directed M'Allister to set the machinery in motion and rise for the purpose of quitting the moon.
"But," interposed John, "are you not going to have a look at the back of the moon, Professor?"
"No, John," I answered, "only a small portion of it is now in the sunlight, the rest is in the blackest darkness, so we should not be likely to learn much more about it than we know at present."
The Golden Age Of Science Fiction Vol Ix Part 145
You're reading novel The Golden Age Of Science Fiction Vol Ix Part 145 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
The Golden Age Of Science Fiction Vol Ix Part 145 summary
You're reading The Golden Age Of Science Fiction Vol Ix Part 145. This novel has been translated by Updating. Author: Various already has 912 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- The Golden Age Of Science Fiction Vol Ix Part 144
- The Golden Age Of Science Fiction Vol Ix Part 146