The Brain and the Voice in Speech and Song Part 1

You’re reading novel The Brain and the Voice in Speech and Song Part 1 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

The Brain and the Voice in Speech and Song.

by F. W. Mott.

PREFACE

The contents of this little book formed the subject of three lectures delivered at the Royal Inst.i.tution "On the Mechanism of the Human Voice"

and three London University lectures at King's College on "The Brain in relation to Speech and Song." I have endeavoured to place this subject before my readers in as simple language as scientific accuracy and requirements permit. Where I have been obliged to use technical anatomical and physiological terms I have either explained their meaning in the text, aided by diagrams and figures, or I have given in brackets the English equivalents of the terms used.

I trust my attempt to give a sketch of the mechanism of the human voice, and how it is produced in speech and song, may prove of interest to the general public, and I even hope that teachers of voice production may find some of the pages dealing with the brain mechanism not unworthy of their attention.

F.W. MOTT

LONDON

_July, 1910_

THE BRAIN AND THE VOICE IN SPEECH AND SONG

In the following pages on the Relation of the Brain to the mechanism of the Voice in Speech and Song, I intend, as far as possible, to explain the mechanism of the instrument, and what I know regarding the cerebral mechanism by which the instrument is played upon in the production of the singing voice and articulate speech. Before, however, pa.s.sing to consider in detail the instrument, I will briefly direct your attention to some facts and theories regarding the origin of speech.

THEORIES ON THE ORIGIN OF SPEECH

The evolutionary theory is thus propounded by Romanes in his "Mental Evolution in Man," pp. 377-399: "Starting from the highly intelligent and social species of anthropoid ape as pictured by Darwin, we can imagine that this animal was accustomed to use its voice freely for the expression of the emotions, uttering danger signals, and singing. Possibly it may also have been sufficiently intelligent to use a few imitative sounds; and certainly sooner or later the receptual life of this social animal must have advanced far enough to have become comparable with that of an infant of about two years of age. That is to say, this animal, although not yet having begun to use articulate signs, must have advanced far enough in the conventional use of natural signs (a sign with a natural origin in tone and gesture, whether spontaneously or intentionally imitative) to have admitted of a totally free exchange of receptual ideas, such as would be concerned in animal wants and even, perhaps, in the simplest forms of co-operative action. Next I think it probable that the advance of receptual intelligence which would have been occasioned by this advance in sign-making would in turn have led to a development of the latter--the two thus acting and reacting on each other until the language of tone and gesture became gradually raised to the level of imperfect pantomime, as in children before they begin to use words. At this stage, however, or even before it, I think very probably vowel sounds must have been employed in tone language, if not also a few consonants. Eventually the action and reaction of receptual intelligence and conventional sign-making must have ended in so far developing the former as to have admitted of the breaking up (or articulation) of vocal sounds, as the only direction in which any improvement in vocal sign-making was possible." Romanes continues his sketch by referring to the probability that this important stage in the development of speech was greatly a.s.sisted by the already existing habit of articulating musical notes, supposing our progenitors to have resembled the gibbons or the chimpanzees in this respect. Darwin in his great work on the "Expression of the Emotions" points to the fact that the gibbon, the most erect and active of the anthropoid apes, is able to sing an octave in half-tones, and it is interesting to note that Dubois considers his Pithecanthropus Erectus is on the same stem as the gibbon. But it has lately been shown that some animals much lower in the scale than monkeys, namely, rodents, are able to produce correct musical tones. Therefore the argument loses force that the progenitors of man probably uttered musical sounds before they had acquired the power of articulate speech, and that consequently, when the voice is used under any strong emotion, it tends to a.s.sume through the principle of a.s.sociation a musical character. The work of anthropologists and linguists, especially the former, supports the progressive-evolution theory, which, briefly stated, is--that articulate language is the result of an elaboration in the long procession of ages in which there occurred three stages--the cry, vocalisation, and articulation.

The cry is the primordial, pure animal language; it is a simple vocal aspiration without articulation; it is either a reflex expressing needs and emotions, or at a higher stage intentional (to call, warn, menace, etc.).

Vocalisation (emission of vowels) is a natural production of the vocal instrument, and does not in itself contain the essential elements of speech. Many animals are capable of vocalisation, and in the child the utterance of vowel sounds is the next stage after the cry.

The conditions necessary to the existence of speech arose with articulation, and it is intelligence that has converted the vocal instrument into the speaking instrument. For whereas correct intonation depends upon the innate musical ear, which is able to control and regulate the tensions of the minute muscles acting upon the vocal cords, it is intelligence which alters and changes the form of the resonator by means of movement of the lips, tongue, and jaw in the production of articulate speech. The simple musical instrument in the production of phonation is bilaterally represented in the brain, but as a speaking instrument it is unilaterally represented in right-handed individuals in the left hemisphere and in left-handed individuals in the right hemisphere. The reason for this we shall consider later; but the fact supports Darwin's hypothesis.

Another hypothesis which was brought forward by Grieger and supported by some authors is summarised by Ribot as follows: "Words are an imitation of the movements of the mouth. The predominant sense in man is that of sight; man is pre-eminently visual. Prior to the acquisition of speech he communicated with his fellows by the aid of gestures and movement of the mouth and face; he appealed to their eyes. Their facial 'grimaces,'

fulfilled and elucidated by gesture, became signs for others; they fixed their attention upon them. When articulate sounds came into being, these lent themselves to a more or less conventional language by reason of their acquired importance." For support of this hypothesis the case of non-educated deaf-mutes is cited. They invent articulate sounds which they cannot hear and use them to designate certain things. Moreover, they employ gesture language--a language which is universally understood.

Another theory of the origin of the speaking voice is that speech is an instinct not evolved, but breaking forth spontaneously in man; but even if this be so, it was originally so inadequate and weak that it required support from the gesture language to become intelligible. This mixed language still survives among some of the inferior races of men. Miss Kingsley and Tylor have pointed out that tribes in Africa have to gather round the camp fires at night in order to converse, because their vocabulary is so incomplete that without being reinforced by gesture and pantomime they would be unable to communicate with one another. Gesture is indispensable for giving precision to vocal sounds in many languages, e.g.

those of the Tasmanians, Greenlanders, savage tribes of Brazil, and Grebos of Western Africa. In other cases speech is a.s.sociated with inarticulate sounds. These sounds have been compared to clicking and clapping, and according to Sayce, these clickings and clappings survive as though to show us how man when deprived of speech can fix and transmit his thoughts by certain sounds. These mixed states represent articulate speech in its primordial state; they represent the stage of transition from pure pantomime to articulate speech.

It seems, then, that originally man had two languages at his disposal which he used simultaneously or interchangeably. They supported each other in the intercommunication of ideas, but speech has triumphed because of its greater practical utility. The language of gesture is disadvantageous for the following reasons: (1) it monopolises the use of the hands; (2) it has the disadvantage that it does not carry any distance; (3) it is useless in the dark; (4) it is vague in character; (5) it is imitative in nature and permits only of the intercommunication of ideas based upon concrete images.

Speech, on the other hand, is transmitted in the dark and with objects intervening; moreover, distance affects its transmission much less. The images of auditory and visual symbols in the growth of speech replace in our minds concrete images and they permit of abstract thought. It is dependent primarily upon the ear, an organ of exquisite feeling, whose sensations are infinite in number and in kind. This sensory receptor with its cerebral perceptor has in the long process of time, aided by vision, under the influence of natural laws of the survival of the fittest, educated and developed an instrument of simple construction (primarily adapted only for the vegetative functions of life and simple vocalisation) into that wonderful instrument the human voice; but by that development, borrowing the words of Huxley, "man has slowly acc.u.mulated and organised the experience which is almost wholly lost with the cessation of every individual life in other animals; so that now he stands raised as upon a mountain-top, far above the level of his humble fellows, and transfigured from his grosser nature by reflecting here and there a ray from the infinite source of truth." Thought in all the higher mental processes could not be carried on at all without the aid of language.

Written language probably originated in an a.n.a.lytical process a.n.a.logous to the language of gesture. Like that, it: (1) isolates terms; (2) arranges them in a certain order; (3) translates thoughts in a crude and somewhat vague form. A curious example of this may be found in Max Muller's "Chips from a German Workshop," XIV.: "The aborigines of the Caroline Islands sent a letter to a Spanish captain as follows: A man with extended arms, sign of greeting; below to the left, the objects they have to barter--five big sh.e.l.ls, seven little ones, three others of different forms; to the right, drawing of the objects they wanted in exchange--three large fish-hooks, four small ones, two axes, two pieces of iron."

Language of graphic signs and spoken language have progressed together, and simultaneously supported each other in the development of the higher mental faculties that differentiate the savage from the brute and the civilised human being from the savage. In spoken language, at any rate, it is not the vocal instrument that has been changed, but the organ of mind with its innate and invisible molecular potentialities, the result of racial and ancestral experiences in past ages. Completely developed languages when studied from the point of view of their evolution are stamped with the print of an unconscious labour that has been fas.h.i.+oning them for centuries.

A little consideration and reflection upon words which have been coined in our own time shows that language offers an abstract and brief chronicle of social psychology.

Articulate language has converted the vocal instrument into the chief agent of the will, but the brain in the process of time has developed by the movements of the lips, tongue, jaw, and soft palate a kinaesthetic[A] sense of articulate speech, which has been integrated and a.s.sociated in the mind with rhythmical modulated sounds conveyed to the brain by the auditory nerves. There has thus been a reciprocal simultaneity in the development of these two senses by which the mental ideas of spoken words are memorised and recalled. Had man been limited to articulate speech he could not have made the immense progress he has made in the development of complex mental processes, for language, by using written verbal symbols, has allowed, not merely the transmission of thought from one individual to another, but the thoughts of the world, past and present, are in a certain measure at the disposal of every individual. With this introduction to the subject I will pa.s.s on to give a detailed description of the instrument of the voice.

[Footnote A: Sense of movement.]

THE VOCAL INSTRUMENT

A distinction is generally made in physics between sound and noise. Noise affects our tympanic membrane as an irregular succession of shocks and we are conscious of a jarring of the auditory apparatus; whereas a musical sound is smooth and pleasant because the tympanic membrane is thrown into successive periodic vibrations to which the auditory receptor (sense organ of hearing) has been attuned. To produce musical sounds, a body must vibrate with the regularity of a pendulum, but it must be capable of imparting sharper or quicker shocks to the air than the pendulum. All musical sounds, however they are produced and by whatever means they are propagated, may be distinguished by three different qualities:

(1) Loudness, (2) Pitch, (3) Quality, timbre or klang, as the Germans call it.

Loudness depends upon the amount of energy expended in producing the sound.

If I rub a tuning-fork with a well-rosined bow, I set it in vibration by the resistance offered to the rosined hair; and if while it is vibrating I again apply the bow, thus expending more energy, the note produced is louder. Repeating the action several times, the width of excursion of the p.r.o.ngs of the tuning-fork is increased. This I can demonstrate, not merely by the loudness of the sound which can be heard, but by sight; for if a small mirror be fixed on one of the p.r.o.ngs and a beam of light be cast upon the mirror, the light being again reflected on to the screen, you will see the spot of light dance up and down, and the more energetically the tuning-fork is bowed the greater is the amplitude of the oscillation of the spot of light. The duration of the time occupied is the same in traversing a longer as in traversing a shorter s.p.a.ce, as is the case of the swinging pendulum. The vibrating p.r.o.ngs of the tuning-fork throw the air into vibrations which are conveyed to the ear and produce the sensation of sound. The duration of time occupied in the vibrations of the tuning-fork is therefore independent of the s.p.a.ce pa.s.sed over. The greater or less energy expended does not influence the duration of time occupied by the vibration; it only influences the amplitude of the vibration.

The second quality of musical sounds is the pitch, and the pitch depends upon the number of vibrations that a sounding body makes in each second of time. The most unmusical ear can distinguish a high note from a low one, even when the interval is not great. Low notes are characterised by a relatively small number of vibrations, and as the pitch rises so the number of vibrations increase. This can be proved in many ways. Take, for example, two tuning-forks of different size: the shorter produces a considerably higher pitched note than the longer one. If a mirror be attached to one of the p.r.o.ngs of each fork, and a beam of light be cast upon each mirror successively and then reflected in a revolving mirror, the oscillating spot of light is converted into a series of waves; and if the waves obtained by reflecting the light from the mirror of the smaller one be counted and compared with those reflected from the mirror attached to the larger fork, it will be found that the number of waves reflected from the smaller fork is proportionally to the difference in the pitch more numerous than the waves reflected from the larger. The air is thrown into corresponding periodic vibrations according to the rate of vibration of the sound-producing body.

Thirdly, the quality, timbre, or klang depends upon the overtones, in respect to which I could cite many experiments to prove that whenever a body vibrates, other bodies near it may be set in vibration, but only on condition that such bodies shall be capable themselves of producing the same note. A number of different forms of resonators can be used to ill.u.s.trate this law; a law indeed which is of the greatest importance in connection with the mechanism of the human voice. Although notes are of the same loudness and pitch when played on different instruments or spoken or sung by different individuals, yet even a person with no ear for music can easily detect a difference in the quality of the sound and is able to recognise the nature of the instrument or the timbre of the voice. This difference in the timbre is due to harmonics or overtones. Could we but see the sonorous waves in the air during the transmission of the sound of a voice, we should see stamped on it the conditions of motion upon which its characteristic qualities depended; which is due to the fact that every vocal sound whose vibrations have a complex form can be decomposed into a series of simple notes all belonging to the harmonic series. These harmonics or overtones will be considered later when dealing with the timbre or quality of the human voice.

The vocal instrument is unlike any other musical instrument; it most nearly approaches a reed instrument. The clarionet and the oboe are examples of reed instruments, in which the reed does not alter but by means of stops the length of the column of air in the resonating pipe varies and determines the pitch of the fundamental note. The organ-pipe with the vibrating tongue of metal serving as the reed is perhaps the nearest approach to the vocal organ; but here again it is the length of the pipe which determines the pitch of the note.

The vocal instrument may be said to consist of three parts: (1) the bellows; (2) the membranous reed contained in the larynx, which by the actions of groups of muscles can be altered in tension and thus variation in pitch determined; (3) the resonator, which consists of the mouth, the throat, the larynx, the nose, and air sinuses contained in the bones of the skull, also the windpipe, the bronchial tubes, and the lungs. The main and important part of the resonator, however, is situated above the glottis (the opening between the vocal cords, _vide_ fig. 6), and it is capable of only slight variations in length and of many and important variations in form. In the production of musical sounds its chief influence is upon the quality of the overtones and therefore upon the timbre of the voice; moreover, the movable structures of the resonator, the lower jaw, the lips, the tongue, the soft palate, can, by changing the form of the resonator, not only impress upon the sound waves particular overtones as they issue from the mouth, but simultaneously can effect the combination of vowels and consonants with the formation of syllables, the combination of syllables with the formation of words, and the combination of words with the formation of articulate language. The reed portion of the instrument acting alone can only express emotional feeling; the resonator, the effector of articulate speech, is the instrument of intelligence, will, and feeling. It must not, however, be thought that the vocal instrument consists of two separately usable parts, for phonation (except in the whispered voice) always accompanies articulation.

In speech, and more especially in singing, there is an art of breathing.

Ordinary inspiration and expiration necessary for the oxygenation of the blood is performed automatically and unconsciously. But in singing the respiratory apparatus is used like the bellows of a musical instrument, and it is controlled and directed by the will; the art of breathing properly is fundamental for the proper production of the singing voice and the speaking voice of the orator. It is necessary always to maintain in the lungs, which act as the bellows, a sufficient reserve of air to finish a phrase; therefore when the opportunity arises it is desirable to take in as much air as possible through the nostrils, and without any apparent effort; the expenditure of the air in the lungs must be controlled and regulated by the power of the will in such a manner as to produce efficiency in loudness with economy of expenditure. It must be remembered, moreover, that mere loudness of sound does not necessarily imply carrying power of the voice, either when speaking or singing. Carrying power, as we shall see later, depends as much upon the proper use of the resonator as upon the force of expulsion of the air by the bellows. Again, a soft note, especially an aspirate, owing to the vocal c.h.i.n.k being widely opened, may be the cause of an expenditure of a larger amount of air than a loud-sounding note.

Observations upon anencephalous monsters (infants born without the great brain) show that breathing and crying can occur without the cerebral hemispheres; moreover, Goltz's dog, in which all the brain had been removed except the stem and base, was able to bark, growl, and snarl, indicating that the primitive function of the vocal instrument can be performed by the lower centres of the brain situated in the medulla oblongata. But the animal growled and barked when the attendant, who fed it daily, approached to give it food, which was a clear indication that the bark and growl had lost both its affective and cognitive significance; it was, indeed, a purely automatic reflex action. It was dependent upon a stimulus arousing an excitation in an instinctive automatic nervous mechanism in the medulla oblongata and spinal cord presiding over synergic groups of muscles habitually brought into action for this simplest form of vocalisation, connected with the primitive emotion of anger.

I will now consider at greater length each part of the vocal instrument.

I. THE BELLOWS

[Ill.u.s.tration: Fig 1]

[Description: FIG. 1.--Front view of the thorax showing the breastbone, to which on either side are attached the (shaded) rib cartilages. The remainder of the thoracic cage is formed by the ribs attached behind to the spine, which is only seen below. The lungs are represented filling the chest cavity, except a little to the left of the breastbone, below where the pericardium is shown (black). It can be seen that the ribs slope forwards and downwards, and that they increase in length from above downwards, so that if elevated by the muscles attached to them, they will tend to push forward the elastic cartilages and breastbone and so increase the antero-posterior diameter of the chest; moreover, the ribs being elastic will tend to give a little at the angle, and so the lateral diameter of the chest will be increased.]

The bellows consists of the lungs enclosed in the movable thorax. The latter may be likened to a cage; it is formed by the spine behind and the ribs, which are attached by cartilages to the breastbone (sternum) in front (_vide_ fig. 1). The ribs and cartilages, as the diagram shows, form a series of hoops which increase in length from above downwards; moreover, they slope obliquely downwards and inwards (_vide_ fig. 2). The ribs are jointed behind to the vertebrae in such a way that muscles attached to them can, by shortening, elevate them; the effect is that the longer ribs are raised, and pus.h.i.+ng forward the breastbone and cartilages, the thoracic cage enlarges from before back; but being elastic, the hoops will give a little and cause some expansion from side to side; moreover, when the ribs are raised, each one is rotated on its axis in such a way that the lower border tends towards eversion; the total effect of this rotation is a lateral expansion of the whole thorax. Between the ribs and the cartilages the s.p.a.ce is filled by the intercostal muscles (_vide_ fig. 2), the action of which, in conjunction with other muscles, is to elevate the ribs. It is, however, unnecessary to enter into anatomical details, and describe all those muscles which elevate and rotate the ribs, and thereby cause enlargement of the thorax in its antero-posterior and lateral diameters.

There is, however, one muscle which forms the floor of the thoracic cage called the diaphragm that requires more than a pa.s.sing notice (_vide_ fig.

2), inasmuch as it is the most effective agent in the expansion of the chest. It consists of a central tendinous portion, above which lies the heart, contained in its bag or pericardium; on either side attached to the central tendon on the one hand and to the spine behind, to the last rib laterally, and to the cartilages of the lowest six ribs anteriorly, is a sheet of muscle fibres which form on either side of the chest a dome-like part.i.tion between the lungs and the abdominal cavity (_vide_ fig. 2). The phrenic nerve arises from the spinal cord in the upper cervical region and descends through the neck and chest to the diaphragm; it is therefore a special nerve of respiration. There are two--one on each side supplying the two sheets of muscle fibres. When innervation currents flow down these nerves the two muscular halves of the diaphragm contract, and the floor of the chest on either side descends; thus the vertical diameter increases.

Now the elastic lungs are covered with a smooth pleura which is reflected from them on to the inner side of the wall of the thorax, leaving no s.p.a.ce between; consequently when the chest expands in all three directions the elastic lungs expand correspondingly. But when either voluntarily or automatically the nerve currents that cause contraction of the muscles of expansion cease, the elastic structures of the lungs and thorax, including the muscles, recoil, the diaphragm ascends, and the ribs by the force of gravity tend to fall into the position of rest. During expansion of the chest a negative pressure is established in the air pa.s.sages and air flows into them from without. In contraction of the chest there is a positive pressure in the air pa.s.sages, and air is expelled; in normal quiet breathing an ebb and flow of air takes place rhythmically and subconsciously; thus in the ordinary speaking of conversation we do not require to exercise any voluntary effort in controlling the breathing, but the orator and more especially the singer uses his knowledge and experience in the voluntary control of his breath, and he is thus enabled to use his vocal instrument in the most effective manner.

[Ill.u.s.tration: FIG. 2

The Brain and the Voice in Speech and Song Part 1

You're reading novel The Brain and the Voice in Speech and Song Part 1 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


The Brain and the Voice in Speech and Song Part 1 summary

You're reading The Brain and the Voice in Speech and Song Part 1. This novel has been translated by Updating. Author: F. W. Mott already has 548 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com