History of the Intellectual Development of Europe Volume II Part 18

You’re reading novel History of the Intellectual Development of Europe Volume II Part 18 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

It will not suit my purpose to offer more than the simplest ill.u.s.tration of the application of the foregoing facts. When an impression, either by pressure or in any other way, is made on the exterior termination of a centripetal fibre, the influence is conveyed with a velocity such as has been mentioned into the vesicle to which that fibre is attached, and thence, going forth along the centrifugal fibre, may give rise to motion through contraction of the muscle to which that fibre is distributed.

[Sidenote: Reflex action of the nervous system.] An impression has thus produced a motion, and to the operation the designation of reflexion is commonly given. This reflexion takes place without consciousness. The three parts--the centripetal fibre, the vesicle, and the centrifugal fibre--conjointly const.i.tute a simple nervous arc.

[Sidenote: Gradual complexity of the nervous system.] A repet.i.tion of these arcs, each precisely like all the others, const.i.tutes the first step toward a complex nervous system. Their manner of arrangement is necessarily subordinated to the general plan of construction of the animals in which they occur. Thus, in the Radiates it is circular; in the Articulates, linear, or upon an axis. But, as the conditions of life require consentaneousness of motion in the different parts, these nerve arcs are not left isolated or without connexion with each other. As it is anatomically termed, they are commissured, nerve fibres pa.s.sing from each to its neighbours, and each is thus brought into sympathy or connexion with all the others.

[Sidenote: First appearance of special ganglia.] The next advance is a very important one, for it indicates the general plan on which the nervous system is to be developed: it is the dedication of special nerve arcs to special duties. Thus, in the higher articulates and molluscs, there are such combinations expressly for the purpose of respiration and deglut.i.tion. Their action is altogether of the reflex kind; it takes place without consciousness. These ganglia are commissured for the sake of sympathetic action, and frequently several of them are coalesced for the sake of package.

This principle of dedication to special uses is carried out in the introduction of ganglia intended to be affected by light, or sounds, or odours. The impressions of those agencies are carried to the ganglion by its centripetal fibres. Such ganglia of special action are most commonly coalesced together, forming nervous ma.s.ses of conspicuous size; they are always commissured with those for ordinary motions, the action being reflex, as in the preceding case, though of a higher order, since it is attended with consciousness.

[Sidenote: They are automatic mechanisms.] Such being the elementary construction of a nervous system, it is plain that animal tribes in which it exists in no higher degree of complexity must be merely automata. In this remark many insects must be included, for the instinct they display is altogether of a mechanical kind, and, so far as they are concerned, without design. Their actions are uniformly alike; what one does under given circ.u.mstances, under the same circ.u.mstances another will certainly do. They are incapable of education, they learn nothing by experience, and the acts they are engaged in they accomplish as well at the first trial as ever after.

Of parts like those described, and of others of a higher order, as will be presently seen, the most complex nervous system, even that of man, is composed. [Sidenote: Evidence to be used in these investigations.] It might, perhaps, be expected that for the determination of the duty of each part of such complex system the physiologist must necessarily resort to experiment, observing what functions have been injured or destroyed when given portions have been removed by his knife. At the best, however, evidence of that kind must be very unsatisfactory on account of the shock the entire system receives in vivisections, and accordingly, artificial evidence can, for the most part, be used only in a corroborative way. But, as Cuvier observed, the hand of Nature has prepared for us these very experiments without that drawback. The animal series, as we advance upward from its lowest members, proves to us what is the effect of the addition of new parts in succession to a nervous system, as also does any individual thereof in its successive periods of development. It is one of the most important discoveries of modern physiology that, as respects their nervous system, we can safely transfer our reasonings and conclusions from the case of the lowest to that of the highest animal tribes.

The articulata present structures and a mode of action ill.u.s.trating in a striking manner the nervous system of man. Lengthwise upon their ventral region is laid a double cord, with ganglia, like a string of beads; sometimes the cords are a little distance apart, but more generally they are coalesced, each pair of ganglia being fused into one. [Sidenote: First introduction of governing ganglia.] To every segment of the body a pair is supplied, each pair controlling its own segment, and acting toward it automatically, each also acting like any of the others. But in the region of the head there is a special pair, the cephalic ganglia, receiving fibres from the eyes and other organs of sense. From them proceed filaments to the ventral cord, establis.h.i.+ng communications with every segment. So every part has two connexions, one with its own ventral ganglia, and one with the cephalic.

It is not difficult to determine experimentally the functions of the ventral ganglia and those of the cephalic. If a centipede be decapitated, its body is still capable of moving, the motion being evidently of a reflex kind, originating in the pressure of the legs against the surface on which they rest. [Sidenote: But thus far actions are only instinctive.] The ventral cord, with its ganglia, is hence purely an automatic mechanism. But if, in making the decapitation, we leave a portion of the body in connexion with the head, we recognize very plainly that the cephalic ganglia are exercising a governing power.

In the part from which they have been cut off the movement is forward, regardless of any obstacle; in that to which they are attached there are modifications in the motions, depending on sight or other special senses; obstacles are avoided, and a variety of directions pursued. Yet still the actions are not intelligent, only instinctive. The general conclusion therefore is, that the cephalic ganglia are of a higher order than the ventral, the latter being simply mechanical, the former instinctive; but thus far there is no trace of intelligence.

[Sidenote: Nervous anatomy of vertebrates, as man.] In man these typical parts are all present, and discharge the functions specified. His spinal cord answers to the ventral cord of the articulates. It has its lateral communications in the same way, and each segmental portion presents the same reflex action. Toward its upper part it dilates to form the medulla oblongata, sending forth nerves for respiration and deglut.i.tion.

[Sidenote: Their automatic apparatus.] Of these the action is still reflex, as is proved by the involuntary movements of respiration and deglut.i.tion. A portion of food being placed in the pharynx, contraction instantly occurs, the will having no kind of control over the act of swallowing. [Sidenote: Their instinctive apparatus.] Above or in front of this enlargement is a series of ganglia, to which converge the nerves of special sense--of hearing, sight, smell; these are, therefore, the equivalents of the cephalic ganglia of insects, their function being also the same. In the lowest vertebrates, as in the amphioxus, the nervous system consists of nothing more. It may therefore be said to have only two parts--the cord and the sensory ganglia, and to have two functions--the automatic, attributable to the former, and the instinctive, attributable to the latter.

[Sidenote: Their intellectual apparatus.] But as we advance from the low vertebrates upward in the animal scale, we begin to detect new organs; on the medulla oblongata a cerebellum, and on the sensory ganglia a cerebrum. From this moment the animal displays reasoning powers, its intelligence becoming more strikingly marked as the development of the new organs is greater.

[Sidenote: Functions of the brain.] It remains to determine with exactness the function of one of these new parts, the cerebrum; the other portion, the cerebellum, being of minor interest, and connected, probably, with the locomotive apparatus. For the same reason it is unnecessary to speak of the sympathetic nerve, since it belongs to the apparatus of organic life. Confining our attention, therefore, to the true brain, or cerebrum, we soon recognize that the intelligence of an animal is, in a general manner, proportional to the relative size of this organ as compared with the sensory ganglia. We are also struck with the fact that the cerebrum does not send forth to other portions any independent fibres of its own, nor does it receive any from them, its only means of communication being through the parts that have been described--that is to say, through the sensory and automatic apparatus.

[Sidenote: Its relations to the instinctive and automatic portions.] The cerebrum is therefore a mechanism of a higher order, and its relations.h.i.+p with the thalami optici and corpora striata indicate the conditions of its functions. It can only receive impressions which have come through them, and only act upon the body through their intermedium.

[Sidenote: Its secondary and tertiary lobes.] Moreover, as we ascend the animal scale, we find that these cerebral parts not only increase in size, but likewise, in their turn, give rise to offshoots; secondary lobes emerging posteriorly on the primary ones, and, in due season, tertiary lobes posteriorly on the secondary. To these, in human anatomy, the designations of anterior, middle, and posterior lobes have been respectively given. In proportion, as this development has proceeded, the intellectual qualities have become more varied and more profound.

[Sidenote: Action of the spinal cord alone.] The relation of the cerebrum to the cranio-spinal axis is manifested by the circ.u.mstance that the latter can act without the former. In sleep the cerebrum is, as it were, torpid, but respiration, deglut.i.tion, and other reflex actions go on. If we touch the palm of a sleeping infant our finger is instantly grasped. [Sidenote: Conjoint action of the brain and cord.] But, though the axis can work without the cerebrum, the cerebrum can not work without the axis. Ill.u.s.trations of these truths may be experimentally obtained. An animal from which the cerebrum has been purposely removed may be observed to perform actions automatic and instinctive, but never intelligent; and that there is no difference between animals and man in this respect is demonstrated by the numerous instances recorded in the works of medicine and surgery of injuries by accident or disease to the human nervous system, the effects corresponding to those artificially produced in experiments on animals. This important observation, moreover, shows that we may with correctness use the observations made on animals in our investigations of the human system.

[Sidenote: Three distinct parts of the nervous system of man.] In the nervous system of man our attention is therefore especially demanded by three essentially distinct parts--the spinal cord, the sensory ganglia, and the cerebrum. [Sidenote: They are the automatic, the instinctive, the intellectual.] Of the first, the spinal cord, the action is automatic; by its aid we can walk, from place to place, without bestowing a thought on our movements; by it we swallow involuntarily; by it we respire unconsciously. The second portion, the sensory ganglia, is, as we have seen, the counterpart of the cephalic ganglia of invertebrates; it is the place of reception of sensuous impressions and the seat of consciousness. To these ganglia instinct is to be referred.

Their function is not at all impaired by the cerebrum superposed upon them. The third portion, the cerebrum, is anatomically distinct. It is the seat of ideas. It does not directly give rise to motions, being obliged to employ for that purpose its intermediate automatic a.s.sociated apparatus. [Sidenote: Dominating control of the latter.] In this realm of ideas thoughts spring forth suggestively from one another in a perpetual train or flux, and yet the highest branch of the nervous mechanism still retains traces of the modes of operation of the parts from which it was developed. Its action is still often reflex. Reason is not always able to control our emotions, as when we laugh or weep in spite of ourselves, under the impression of some external incident. Nay, more; the inciting cause may be, as we very well know, nothing material--nothing but a recollection, an idea--and yet it is enough. But these phenomena are perhaps restricted to the first or anterior lobes of the brain, and, accordingly, we remark them most distinctly in children and in animals. As the second and third lobes begin to exercise their power, such effects are brought under control.

[Sidenote: Progressive nervous development in the animal series.] There is, therefore, a regular progression, a definite improvement in the nervous system of the animal series, the plan never varying, but being persistently carried out, and thus offering a powerful argument for relations.h.i.+p among all those successively improving forms, an observation which becomes of the utmost interest to us in its application to the vertebrates. In the amphioxus, as has been said, the cranio-spinal axis alone exists; the Cyclostome fishes are but a step higher. In fishes the true cerebrum appears at first in an insignificant manner, a condition repeated in the early embryonic state both of birds and mammals. An improvement is made in reptiles, whose cerebral hemispheres are larger than their optic lobes. As we advance to birds, a further increase occurs; the hemispheres are now of nearly sufficient dimensions to cover over those ganglia. In the lower mammals there is another step, yet not a very great one. But from the anterior lobes, which thus far have const.i.tuted the entire brain, there are next to be developed the middle lobes. In the Rodents the progress is still continued, and in the Ruminants and Pachyderms the convolutions have become well marked. [Sidenote: It attains its maximum in man.] In the higher carnivora and quadrumana the posterior or tertiary lobes appear.

The pa.s.sage from the anthropoid apes to man brings us to the utmost development thus far attained by the nervous system. The cerebrum has reached its maximum organization by a continued and unbroken process of development.

[Sidenote: The same progressive development occurs in each individual man.] This orderly development of the nervous system in the animal series is recognized again in the gradual development of the individual man. The primitive trace, as it faintly appears in the germinal membrane, marks out the place presently to be occupied by the cranio-spinal axis, and, that point of development gained, man answers to the amphioxus. Not until the twelfth week of embryonic life does he reach the state permanently presented by birds; at this time the anterior lobes are only perceptible. In four or six weeks more the middle lobes are evolved posteriorly on the anterior, and, finally, in a similar manner, the tertiary or posterior ones are formed. And thus it appears that, compared with the nervous system of other animals, that of man proceeds through the same predetermined succession of forms. Theirs suffers an arrest, in some instances at a lower, in some at a higher point, but his pa.s.ses onward to completion.

[Sidenote: It occurs again in the entire life of the globe.] But that is not all. The biography of the earth, the life of the entire globe, corresponds to this progress of the individual, to this orderly relation of the animal series. Commencing with the oldest rocks that furnish animal remains, and advancing to the most recent, we recognize a continual improvement in construction, indicated by the degree of advancement of the nervous system. The earliest fishes did not proceed beyond that condition of the spinal column which is to be considered as embryonic. The Silurian and Devonian rocks do not present it in an ossified state. Fishes, up to the Carboniferous epoch, had a heterocercal tail, just as the embryos of osseous fishes of the present time have up to a certain period of their life. There was, therefore, an arrest in the old extinct forms, and an advance to a higher point in the more modern. The buckler-headed fishes of the Devonian rocks had their respiratory organs and much of their digestive apparatus in the head, and showed an approximation to the tadpoles or embryos of the frog. The crocodiles of the oolite had biconcave vertebrae, like the embryos of the recent ones which have gained the capability of making an advance to a higher point. In the geological order, reptiles make their appearance next after fishes, and this is what we should expect on the principle of an ascending nervous development. Not until long after come birds, later in date and higher in nervous advancement, capable not only of instinct, but also of intelligence. Of mammals, the first that appear are what we should have expected--the marsupials; but among the tertiary rocks, very many other forms are presented, the earlier ones, whether herbivorous or carnivorous, having a closer correspondence to the archetype than the existing ones, save in their embryonic states, the a.n.a.logies occurring in such minor details as the possession of forty-four teeth. [Sidenote: Absolute necessity of admitting trans.m.u.tation of forms.] The biography of the earth is thus, on the great scale, typical of individual life, even that of man, and the succession of species in the progress of numberless ages is the counterpart of the trans.m.u.tation of an individual from form to form. As in a dissolving view, new objects emerge from old ones, and new forms spontaneously appear without the exercise of any periodical creative act.

[Sidenote: Life of man from infancy to maturity in accordance with his anatomy.] For some days after birth the actions of the human being are merely reflex. Its cranio-spinal axis alone is in operation, and thus far it is only an automaton. But soon the impressions of external objects begin to be registered or preserved in the sensory ganglia, and the evidences of memory appear. The first token of this is perhaps the display of an attachment to persons, not through any intelligent recognition of relations.h.i.+p, but merely because of familiarity. This is followed by the manifestation of a liking to accustomed places and a dread of strange ones. At this stage the infant is leading an instinctive life, and has made no greater advance than many of the lower mammals; but they linger here, while he proceeds onward. He soon shows high powers of memory, the exercise of reason in the determinations of judgment, and in the adaptation of varied means to varied ends.

Such is therefore the process of development of the nervous system of man; such are the powers which consequently he successively displays.

His reason at last is paramount. No longer are his actions exclusively prompted by sensations; they are determined much more by ideas that have resulted from his former experiences. While animals which approach him most closely in construction require an external stimulus to commence a train of thought, he can direct his mental operations, and in this respect is parted from them by a vast interval. The states through which he has pa.s.sed are the automatic, the instinctive, the intellectual; each has its own apparatus, and all at last work harmoniously together.

[Sidenote: Every person consists of two lateral individuals.] But besides this superposition of an instinctive apparatus upon an automatic one, and an intellectual upon an instinctive, the nervous system consists of two equal and symmetrical lateral portions, a right half and a left. Each person may be considered as consisting in reality of two individuals. The right half may be stricken with palsy, the left be unimpaired; one may lose its sight or hearing, the other may retain them. These lateral halves lead independent lives. Yet, though independent in this sense, they are closely connected in another. The brain of the right side rules over the left half of the body, that of the left side rules over the right of the body. [Sidenote: Consequences of this doubleness of construction.] On the relations.h.i.+ps and antagonisms of the two halves of the cerebro-spinal system must be founded our explanations of the otherwise mysterious phenomena of double and alternate life; of the sentiment of pre-existence; of trains of thought, often double, but never triple; of the wilful delusions of castle-building, in which one hemisphere of the brain listens to the romance suggestions of the other, though both well know that the subject they are entertaining themselves with is a mere fiction. The strength and precision of mental operations depend as much upon the complete equivalency of the two lateral halves as upon their absolute development. It is scarcely to be expected that great intellectual indications will be given by him, one of whose cerebral hemispheres is unequal to the other. But for the detailed consideration of these topics I may refer the reader to my work on Physiology. He will there find the explanation of the nature of registering ganglia; the physical theory of memory; the causes of our variable psychical powers at different times; the description of the ear as the organ of time; the eye as the organ of s.p.a.ce; the touch as that of pressures and temperatures; the smell and taste as those for the chemical determination of gases and liquids.

[Sidenote: Conclusions from the foregoing anatomical facts.] From a consideration of the construction, development, and action of the nervous system of man, we may gain correct views of his relations to other organic beings, and obtain true psychical and metaphysical theories. There is not that h.o.m.ogeneousness in his intellectual structure which writers on those topics so long supposed. It is a triple mechanism. [Sidenote: Man a member of the animal series.] A gentle, a gradual, a definite development reaches its maximum in him without a breach of continuity. Parts which, because of their completion, are capable of yielding in him such splendid results, are seen in a rudimentary and useless condition in organisms very far down below. On the clear recognition of this rudimentary, this useless state, very much depends. It indicates the master-fact of psychology--the fact that Averroes overlooked--that, while man agrees with inferior beings in the type of his construction, and pa.s.ses in his development through transformations a.n.a.logous to theirs, he differs from them all in this, that he alone possesses an accountable, an immortal soul. It is true that there are some which closely approach him in structure, but the existence of structure by no means implies the exercise of functions. In the still-born infant, the mechanism for respiration, the lungs, is completed; but the air may never enter, and the intention for which they were formed never be carried out.

[Sidenote: His life and that of the planet alike.] Moreover, it appears that the order of development in the life of individual man and the order of development in the life of the earth are the same, their common features indicating a common plan. The one is the movement of a few hours, the other of myriads of ages. This sameness of manner in their progression points out their dependence on a law immutable and universal. The successive appearance of the animal series in the endless course of time has not, therefore, been accidental, but as predetermined and as certain as the successive forms of the individual. In the latter we do not find any cause of surprise in the a.s.sumption of states ever increasing in improvement, ever rising higher and higher toward the perfection destined to be attained. We look upon it as the course of nature. Why, then, should we consider the extinctions and creations of the former as offering any thing unaccountable, as connected with a sudden creative fiat or with an arbitrary sentence of destruction?

[Sidenote: Progress of humanity is according to law.] In this book I have endeavoured to investigate the progress of humanity, and found that it shows all the phases of individual movement, the evidence employed being historical, and, therefore, of a nature altogether different from that on which our conclusions in the collateral instances rest. It may serve to a.s.sure us that the ideas here presented are true when we encounter, at the close of our investigation, this harmony between the life of the individual, the life of society, and the life of the earth.

Is it probable that the individual proceeds in his movement of development under law, that the planet also proceeds in its movements under law, but that society does not proceed under law?

[Sidenote: Eternity and universality of that law.] Man, thus, is the last term of an innumerable series of organisms, which, under the domination of law, has, in the lapse of time, been evolving. Law has controlled the inorganic world, and caused the earth to pa.s.s through various physical conditions, gently and continuously succeeding one another. The plastic forms of organic beings have been modelled to suit those changing conditions. The invariability of that law is indicated by the numberless ages through which it has been maintained, its universality by its holding good in the life of the meanest individual.

But it is only a part of sociology that we have considered, and of which we have investigated the development. [Sidenote: Comparative sociology.]

In the most philosophical aspect the subject includes comparative as well as human sociology. For, though there may not be society where actions are simply reflex, there is a possibility of it where they are instinctive, as well as where they are intellectual. Its essential condition being intercommunication, there are necessarily modifications depending respectively on touch or upon the higher and more delicate senses. That is none the less society which, among insects, depends upon antennal contacts. Human society, founded on speech, sight, hearing, has its indistinct beginnings, its rudiments, very low down in the animal scale, as in the bell-like note which some of the nudibranchiate gasteropods emit, or the solitary midnight tapping with which the death-watch salutes his mate. Society resting on instinct is characterised by immobility; it is necessarily unprogressive. Society resting on intellect is always advancing.

But, for the present, declining this general examination of sociology, and limiting our attention strictly to that of humanity, we can not fail to be struck with the fact that in us the direction of evolution is altogether toward the intellectual, a conclusion equally impressed upon us whether our mode of examination be anatomical or historical.

[Sidenote: The aim of Nature is not at moral, but intellectual development.] Anatomically we find no provision in the nervous system for the improvement of the moral, save indirectly through the intellectual, the whole aim of development being for the sake of intelligence. Historically, in the same manner, we find that the intellectual has always led the way in social advancement, the moral having been subordinate thereto. The former hay been the mainspring of the movement, the latter pa.s.sively affected. It is a mistake to make the progress of society depend on that which is itself controlled by a higher power. In the earlier and inferior stages of individual life we may govern through the moral alone. In that way we may guide children, but it is to the understanding of the adult that we must appeal.

[Sidenote: Systems of policy must be in accordance therewith.] A system working only through the moral must sooner or later come into an antagonism with the intellectual, and, if it do not contain within itself a means of adaptation to the changing circ.u.mstances, it must in the end be overthrown. This was the grand error of that Roman system which presided while European civilization was developing. It a.s.sumed as its basis a uniform, a stationary psychological condition in man.

Forgetting that the powers of the mind grow with the possessions of the mind, it considered those who lived in past generations as being in no respect mentally inferior to those who are living now, though our children at sixteen may have a wider range of knowledge than our ancestors at sixty. That such an imperfect system could exist for so many ages is a proof of a contemporary condition of undeveloped intellect, just as we see that the understanding of a child does not revolt against the moral suasion, often intrinsically feeble, through which we attempt to influence him. But it would be as unphilosophical to treat with disdain the ideas that have served for a guide in the earlier ages of European life, as to look with contempt on the motives that have guided us in youth. Their feebleness and incompetency are excused by their suitability to the period of life to which they are applied.

But whoever considers these things will see that there is a term beyond which the application of such methods cannot be extended. [Sidenote: The Age of Reason demands intellectual incentives for the individual.] The head of a family would act unwisely if he attempted to apply to his son at twenty-one the methods he had successfully used at ten; such methods could be only rendered effective by a resort to physical compulsion. A great change in the intervening years has taken place, and ideas once intrinsically powerful can exert their influence no more. The moral may have remained unchanged; it may be precisely as it was--no better, no worse; but that which has changed is the understanding. Reasoning and inducements of an intellectual kind are now needful. An attempt to persist in an absolute system by constraint would only meet with remonstrance and derision.

[Sidenote: And the same holds good for humanity.] If it is thus with the individual, so it is likewise with humanity. For centuries nations may live under forms that meet their requirements, forms suitable to a feeble state; but it is altogether illusory to suppose that such an adaptedness can continue for ever. A critical eye discerns that the mental features of a given generation have become different from those of its ancestors. New ideas and a new manner of action are the tokens that a modification has silently taken place. Though after a short interval the change might not amount to much, in the course of time there must inevitably be exhibited the spectacle of a society that had outgrown its forms, its rules of life.

Wherever, then, such a want of harmony becomes perceptible, where the social system is incompatible with the social state, and is, in effect, an obsolete anachronism, it is plainly unphilosophical and unwise to resort to means of compulsion. No matter what the power of governments or of human authorities may be, it is impossible for them to stop the intellectual advancement, for it forces its way by an organic law over which they have no kind of control.

[Sidenote: Summary of the investigation of the position of man.]

Astronomers sometimes affirm that the sun is the cause, directly or indirectly, of all the mechanical movements that take place upon the earth. Physiologists say that he is the generator of the countless living forms with which her surface is adorned.

[Sidenote: Influence of the sun on inorganic nature, and on organic nature.] If the light, the warmth, and other physical influences of the sun could be excluded, there would be a stagnant and icy sea encircling silent and solitary sh.o.r.es. But the veil once withdrawn, or the influences permitted to take effect, this night and stillness would give place to activity and change. In the morning beams of the day, the tropical waters, expanding, would follow from east to west the course of the sun, each renewed dawn renewing the impulse, and adding force to the gentle but resistless current. At one place the flowing ma.s.s would move compactly; at another, caught by accidentally projecting rocks, it would give off little eddies, expending their share of its force; or, compressed in narrow pa.s.sages, it would rush impetuously along. Upon its surface myriads of momentary ripples would play, or opposing winds, called into existence by similar disturbances in the air, would force it into waves, making the sh.o.r.es resound with their breaking surge. Twice every day, under the conjoint influences of the sun and moon, as if the inanimate globe itself were breathing, the tide would rise and fall again upon the bosom of the deep.

The eddy, the ripple, the wave, the current, are accidental forms through which the originally imparted force is displayed. They are all expending power. Their life, if such a term can be used, is not the property of themselves, but of the ocean to which they belong.

Influences which thus metaphorically give life to the sea, in reality give life to the land. Under their genial operation a wave of verdure spreads over the earth, and countless myriads of animated things attend it, each like the eddies and ripples of the sea, expending its share of the imparted force. The life of these accidental forms, through which power is being transposed, belongs, not to itself, but to the universe of which it is a part.

[Sidenote: Nature of animals.] Of the waves upon the ocean there may not be two alike. The winds, the sh.o.r.es, their mutual interferences, a hundred extraneous influences, mould them into their ephemeral shapes.

So those collections of matter of which animated things consist offer a plastic substance to be modified. The number of individuals counts like the ripples of the sea.

[Sidenote: They const.i.tute a series.] As external circ.u.mstances change, animated forms change with them, and thus arises a series of which the members stand in a connected relation. The affiliated sequence of the external circ.u.mstances is represented in the affiliated succession of living types. From parts, or from things already existing, new parts and new things emerge, the new not being added or juxtaposed to the old, but evolved or developed from it. From the h.o.m.ogeneous or general, the heterogeneous or special is brought forth. A new member, fas.h.i.+oned in secrecy and apart, is never abruptly ingrafted on any living thing. New animal types have never been suddenly located among old ones, but have emerged from them by process of trans.m.u.tation. As certainly as that every living thing must die, so must it reach perfection by pa.s.sing through a succession of subordinate forms. An individual, or even a species, is only a zoological phase in a pa.s.sage to something beyond. An instantaneous adult, like an immortal animal, is a physiological impossibility.

[Sidenote: The doctrine of progressive improvement.] This bringing forth of structure from structure, of function from function, incidentally presents, upon the whole, an appearance of progressive improvement, and for such it has been not unfrequently mistaken. Thus if the lowest animals, which move by reflex action instantly but unconsciously, when an impression is made upon them, be compared with the higher ones, whose motions are executed under the influence of antecedent impressions, and are therefore controlled by ideas, there seems to have been such an improvement. Still, however, it is altogether of a physical kind. Every impression of which the dog or elephant is conscious implies change in the nerve centres, and these changes are at the basis of the memory displayed by those animals. Our own experience furnishes many ill.u.s.trations. When we gaze steadfastly on some brightly-illuminated object, and then close or turn aside our eyes, a fading impression of the object at which we have been looking still remains; or, when a spark is made to revolve rapidly, we think we see a circle of fire, the impression upon the retina lasting until the spark has completed its revolution. In like manner, though far more perfectly, are impressions registered or stored up in the sensory ganglia, the phantoms of realities that have once been seen. In those organs countless images may thus be superposed.

[Sidenote: a.n.a.logies between animals and man.] Man agrees with animals thus approaching him in anatomical construction in many important respects. He, too, represents a continuous succession of matter, a continuous expenditure of power. Impressions of external things are concealed in his sensory ganglia, to be presented for inspection in subsequent times, and to const.i.tute motives of action. But he differs from them in this, that what was preparatory and rudimentary in them is complete and perfect in him. From the instrument of instinct there has been developed an instrument of intellection. In the most perfect quadrupeds, an external stimulus is required to start a train of thought, which then moves on in a determinate way, their actions indicating that, under the circ.u.mstances, they reason according to the same rules as man, drawing conclusions more or less correct from the facts offered to their notice. But, the instrument of intellection completed, it is quickly brought into use, and now results of the highest order appear. The succession of ideas is under control; new trains can be originated not only by external causes, but also by an interior, a spontaneous influence. The pa.s.sive has become active.

Animals remember, man alone recollects. Every thing demonstrates that the development and completion of this instrument of intellection has been followed by the super-addition of an agent or principle that can use it.

[Sidenote: Points of distinction between them.] There is, then, a difference between the brutes and man, not only as respects const.i.tution, but also as respects destiny. Their active force merges into other mundane forces and disappears, but the special principle given to him endures. We willingly persuade ourselves that this principle is actually personified, and that the shades of the dead resemble their living forms. To Eastern Asia, where philosophy has been accustomed to the abstract idea of force, the pleasures we derive from this contemplation are denied, the cheerless doctrine of Buddhism likening the life of man to the burning of a lamp, and death to its extinction. Perceiving in the mutation of things, as seen in the narrow range of human vision, a suggestion of the variations and distribution of power throughout nature, it rises to a grand, and, it must be added, an awful conception of the universe.

But Europe, and also the Mohammedan nations of Asia, have not received with approbation that view. [Sidenote: The human soul.] To them there is an individualized impersonation of the soul, and an expectation of its life hereafter. The animal fabric is only an instrument for its use. The eye is the window through which that mysterious principle perceives: through the ear are brought to its attention articulate sounds and harmonies; by the other organs the sensible qualities of bodies are made known. From the silent chambers and winding labyrinths of the brain the veiled enchantress looks forth on the outer world, and holds the subservient body in an irresistible spell.

[Sidenote: Extension of these views to the nature of the world.] This difference between the Oriental and European ideas respecting the nature of man reappears in their ideas respecting the nature of the world. The one sees in it only a gigantic engine, in which stars and orbs are diffusing power and running through predestined mutations. The other, with better philosophy and a higher science, a.s.serts a personal G.o.d, who considers and orders events in a vast panorama before him.

History of the Intellectual Development of Europe Volume II Part 18

You're reading novel History of the Intellectual Development of Europe Volume II Part 18 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


History of the Intellectual Development of Europe Volume II Part 18 summary

You're reading History of the Intellectual Development of Europe Volume II Part 18. This novel has been translated by Updating. Author: John William Draper already has 758 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com