The life of Isambard Kingdom Brunel, Civil Engineer Part 24

You’re reading novel The life of Isambard Kingdom Brunel, Civil Engineer Part 24 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

The weight of wrought-iron work in each of the trusses of the main opening is 460 tons, inclusive of the longitudinal and cross girders, which weigh 130 tons.

At the points where the roadway girders are intersected by the inclined chains, they are not fixed to the chains, but rest upon them, rollers and saddles being placed between; and at the ends of the short horizontal links, in the middle of the span, there are screws for adjusting the level of the girders.

These arrangements were made in order that the roadway girders might not be strained by the slight alteration in the form of the truss which takes place when a load comes on the bridge.

The continuous roadway girders were, in the case of the large span, supported at six points, and in those over the three land spans at four points. As the strains on continuous beams, supported at so many points, had not at that time been fully investigated, Mr. Brunel had the subject carefully enquired into both by calculation and experiment, and was thus enabled to proportion the section of the girders to the strains at each point in their length. Some account of this investigation is given in the note at the end of this chapter.

As soon as the ironwork for the first truss was completed, it was put together parallel to the river bank close to the site of the bridge. The ends were supported on temporary piers, and the structure was uniformly weighted with a load of 770 tons, or 2 tons per foot run. In unloading it, the weight was taken off from one end of the truss, so as to test its strength when unequally loaded. The testing having been satisfactorily completed, the truss was taken to pieces, and preparations were made for erecting it.



It was necessary that the river traffic should not be interrupted for any long period; this circ.u.mstance materially influenced the nature of the design of the superstructure, which was such that no scaffolding was required in its erection, nor was there any interference with the navigation for more than a single tide. The truss was made so that it could be divided into parts, each of which could be lifted separately and quickly. For the operation of lifting Mr. Brunel determined to use chain purchases worked by crabs.[102] The tube was temporarily stiffened by portions of the main chains, arranged so as to form a truss. With this a.s.sistance it was able to carry its own weight when suspended by the two ends.

The preliminary operation of slewing the tube to its position on a platform at right angles to the river, was a work requiring a good deal of careful contrivance. When this had been accomplished, a pontoon, consisting of six wrought-iron barges, was placed opposite the end of the tube, and all was ready for floating it across the river.

The floating took place on Thursday morning, April 8, 1852. The tube had been rolled forward on two trucks till its end overhung the pontoon; and, as the tide rose, the pontoon floated with the end of the tube resting on it. In order to guide it in a straight line across the river, hawsers were attached to points on the bank up and down the stream, and were led to crabs on the pontoon, so that by hauling on either hawser the tube was kept in its right course. As spring tides at Chepstow rise 40 feet, there is a rapid current except for a very short time.

The operation of drawing the tube across was commenced at a little after nine o'clock, and by a quarter to ten the pontoon had reached the other side safely, and the tube spanned the river. All proceeded with perfect quiet and regularity under the management of Mr. Brunel, who was a.s.sisted by Mr. Brereton and Captain Claxton. As soon as the pontoon reached the further sh.o.r.e, the chains of the lifting tackles were attached to the tube. The tube was lifted in the course of the day to the level of the railway, and afterwards to its place on the top of the piers, when the suspension chains and the rest of the truss were attached to it. The bridge was opened for a single line of way on July 14, 1852. The second tube was floated in a similar manner to the first, and the bridge was completed shortly afterwards.

The total cost of the Chepstow bridge was 77,000_l_.[103]

The Royal Albert Bridge, which carries the Cornwall Railway across the River Tamar at Saltash, is the last and greatest of Mr. Brunel's railway works.

A railway into Cornwall, crossing the river Tamar, was proposed as early as 1844. Mr. Brunel at one time thought of carrying the trains across on a steam ferry similar to those which had been successfully introduced by Mr. Rendel.

In 1845 a company was formed and an application made for an Act to construct the railway either with a steam ferry at Torpoint or by a bridge at Saltash. The latter plan was sanctioned by Parliament.

The height of the line shown on the section at the crossing of the Tamar was 80 feet above high water. The Admiralty, however, required that this height should be increased. No further steps were taken till the beginning of 1847, when some preliminary borings and sections were made, in order to prepare definite plans for the bridge. The facts then ascertained were so encouraging as to strengthen Mr. Brunel in his opinion that the difficulties to be encountered would not be found greater than had been antic.i.p.ated.

The river at Saltash is 1,100 feet wide, with a depth in the middle of about 70 feet at high water. It had at first been intended to construct the bridge with one span of 255 feet, and six of 105 feet, with superstructures of timber-trussed arches.[104] In compliance with the requirements of the Admiralty, the design was altered to two spans of 300 feet, and two of 200 feet, with a clear headway of 100 feet. This arrangement would have required three piers in deep water. Mr. Brunel subsequently decided to have only one pier in deep water, and to have two spans of 465 feet each. It was afterwards found that these could be reduced to 455 feet.[105]

Twenty years before, while engaged with his father on the Thames Tunnel, he had conceived the idea of working under a diving-bell of great dimensions. Sir Isambard approved of the suggestion, and thought of applying it in sinking the shafts of the Tunnel. Drawings were prepared, but the circ.u.mstance of a patent for a similar idea having been taken out by Lord Cochrane partly deterred him from carrying out the project, though some sketches were afterwards made for constructing a lighthouse by means of this arrangement. When the construction of the Cornwall Railway had to be considered, Mr. Brunel thought that his old idea would be applicable to the difficulties to be encountered at Saltash.

Although the plan of using a large diving-bell was one which was nearly certain to be successful, Mr. Brunel thought it probable that a large cylinder of wrought iron could be constructed to serve as a coffer-dam, and that after sinking it through the mud, the bottom edge might be sufficiently water-tight to admit of the water being pumped out, and the masonry of the pier built in the ordinary manner.

A trial cylinder, 6 feet diameter and 85 feet long, was made, partly to ascertain whether or not this plan was practicable, but mainly for the purpose of thoroughly examining the site of the centre pier, where the surface of the rock was 80 feet below high water.

A strong framework was fitted on two gun-brig hulks, with powerful tackle for lowering and raising the cylinder. After it had been lowered to the bottom, five borings were taken within it, reaching through the mud to the rock. The cylinder was then s.h.i.+fted and similar borings made.

The positions of the borings, one hundred and seventy five in all, were carefully recorded; and thus a minute and accurate survey was obtained of the surface of the rock. The site of the pier was afterwards determined by means of a model constructed from these observations. In January 1849, when sufficient information had been obtained, the water was pumped out of the trial cylinder, and the mud excavated down to the rock. A short piece of masonry was then built, to demonstrate the practicability of building a pier in such a situation.

The expenditure of the Company for works of all kinds was shortly afterwards curtailed as much as possible, and no further progress was made for upwards of three years. However, information had been gained which proved that a masonry pier could be built in the middle of the river, on a good rock foundation which was there covered by a thickness of about 16 feet of mud.

During the suspension of the works, all the plans were revised, with the view of reducing the first cost wherever practicable; and Mr. Brunel decided not to make the bridge for a double line, even if there were money forthcoming to do so. His reason for this is given in the following report to the Board of Trade, made in 1852:--

This bridge had been always a.s.sumed to be constructed for a double line of railway as well as the rest of the line. In constructing the whole of the line at present with a single line of rails, except at certain places, the prospect of doubling it hereafter is not wholly abandoned, but with respect to the bridge it is otherwise.

It is now universally admitted that when a sufficient object is to be attained, arrangements may easily be made by which a short piece of single line can be worked without any appreciable inconvenience.... This will make a reduction of at least 100,000_l._

In the summer of 1852 the designs of the bridge were matured, and by the beginning of 1853 the Admiralty had approved of them; the work of constructing the great cylinder for the centre pier was then commenced.

It was determined to provide for the possibility of having to employ the pneumatic process. The cylinder had a diameter of 35 feet at the bottom, and about 20 feet above the lower end of it a dome was made to form the roof of the diving-bell; from the centre of the dome rose a tube 10 feet in diameter to the level of the top of the great cylinder.

As a diving-bell of this size, under 80 feet of water, might have proved unmanageable, an annular s.p.a.ce, forming a gallery or jacket of 4 feet in width and 20 feet high, was formed round the inner circ.u.mference of the bottom of the cylinder below the dome. This annular s.p.a.ce was divided by radial vertical part.i.tions into eleven compartments, and was connected at the top by an air-pa.s.sage with a 6-foot cylinder, which was placed eccentrically inside the 10-foot cylinder already mentioned, and served as a communication between the outside and the annulus. On the top of the 6-foot cylinder were placed the air-locks of the pneumatic apparatus which had been used at Chepstow. Thus air might be pumped into the annular s.p.a.ce, the water expelled, and the work carried on without having to use air pressure under the whole of the dome. In that part of the 10-foot cylinder which was not occupied by the 6-foot cylinder a powerful set of pumps were fixed to keep down the water in the central s.p.a.ce, and diminish the pressure under which the men worked, thus utilising whatever advantage could be gained from the great cylinder acting as a coffer-dam. As it had been ascertained that the surface of the rock dipped to the south-west to the extent of about 6 feet in the width of the pier, the bottom of the cylinder was made oblique, so as to fit the surface of the rock. These arrangements are represented in the transverse section of the great cylinder (Pl. V. p. 218).[106]

The great cylinder, having been constructed on the river-bank, was moved down to low water on launching-ways, and floated off by the rising tide.

Guided between four pontoons, it was finally sunk in correct position in June 1854.

Some delay in penetrating the mud was caused by a bed of oyster sh.e.l.ls, which had to be cut through by one edge of the cylinder. In consequence of some irregularities of the surface of the rock, the cylinder at first deviated considerably from an upright position; and it was necessary to use the pneumatic apparatus to gain access to the rock, and excavate it.

The height of the annulus below the dome was such that it was not quite filled by the mud when the cylinder rested on the bottom. The work of getting the mud out of the annular s.p.a.ce was much facilitated by the division of it into compartments.

By February 1855, the cylinder had been sunk to its full depth in an upright position, and it then rested everywhere on the rock, its lowest point being 87 feet 6 inches below high water.

Much trouble was given by a spring of water issuing out of a fissure in the rock, in one of the compartments, but the flow was stopped by driving close sheet piles into the fissure. The rock in the annulus was dressed, and the s.p.a.ce filled by a ring of granite ashlar masonry which was built to a height of about 7 feet all round. The state of the work at this time is that represented in the section of the cylinder, (Pl. V.

p. 218).

The rock consisted of greenstone trap, so hard that tools could with difficulty be got to work it. When the ring of masonry was completed, it was expected that the bottom might be sufficiently water-tight to act as a coffer-dam, and allow of the mud being taken out from the central part of the cylinder, below the dome. But the pumping power was not at first sufficient for this purpose, and it was thought that it would be necessary to employ the pneumatic process in this s.p.a.ce also.

However, by rapid and incessant pumping the water was lowered so as to allow of the mud and rock being excavated, and the masonry in the central s.p.a.ce built without having again recourse to the use of air pressure. The leakage water was conveyed to two wells, formed of cast-iron pipes built into the masonry, from which the water was pumped.

The inner plates of the annulus were cut out, and the work in the centre which consisted of granite ashlar set in cement was thoroughly bonded into the ring of masonry already built. When the work was carried up to the level of the dome, both the dome and the internal 10-foot cylinder were cut out and removed. When the building had been carried up some height, the pump wells were filled with cement concrete, and the influx of water stopped. Finally, about the end of 1856, when the masonry was completed to the cap of the pier, the upper part of the great cylinder was unbolted and taken ash.o.r.e, it having been made in two halves with that object. Thus the most difficult part of the undertaking was successfully completed.[107]

The centre pier of the Saltash bridge is, like many great engineering works, out of sight, and little regarded by any but professional men.

The rest of the bridge forms a striking feature in a beautiful landscape, and its appearance is well known.

The whole length of the bridge is about 2,200 feet, and is divided into two great spans over the river of 455 feet each and seventeen side spans, varying from 70 to 90 feet, which are on sharp curves. The piers of the side spans, as well as the two large piers carrying the land ends of the main trusses, are of masonry. The masonry of the centre pier is 35 feet in diameter, and is carried up about 12 feet above high water level. On it stand four cast-iron octagonal columns, rising up to the level of the railway. The piers which support the ends of the great trusses are constructed with arched openings, through which the trains pa.s.s.

The transverse elevation of the centre pier (Pl. V.) shows the octagonal columns connected by cast-iron open-work, and the arched opening. The upper part of the centre pier is a cast-iron standard, and that of the land piers is of masonry cased with cast iron.[108]

The elevation shows the great height of the structure, the rails being 190 feet and the highest part of the truss 260 feet above the lowest point of the foundations.

The railway is carried over each of the smaller openings between two longitudinal girders, and over the main spans it is carried between similar longitudinal girders, which are suspended at intervals from the main truss.

[Ill.u.s.tration: THE ROYAL ALBERT BRIDGE]

Each truss consists of a wrought-iron oval tube, which forms an arch, and of two suspension chains,[109] one on either side of the tube, connecting its two ends. The rise of the arched tube above its abutments on the top of the piers is the same as the fall of the suspension chains below the same level. At eleven points in the length of the truss the chains are connected to the tube by upright standards, which are braced together by diagonal bars, in order to resist the strains due to unequal loading. The roadway girders are suspended from the truss at the upright standards already mentioned, and at an intermediate point between each of them.

The truss has the great depth of 56 feet in the centre; this conduces materially to the economy of the construction, as it diminishes the strain upon the princ.i.p.al parts, the tube and the chains, and so enables them to be made of smaller dimensions.

[Ill.u.s.tration: Fig. 12. Truss of Saltash Bridge.

_Transverse section._

_Scale of feet._]

The woodcut (fig. 12) is a transverse section in the centre of the truss, showing the oval tube, the chains, the upright and standards, the roadway girders.

The tube is made oval in section with the greater diameter horizontal, in order that it may have stiffness sideways under the compressive strain, and that the main chains may hang vertically at such a distance as to leave room for the roadway between them. The tube is 16 feet 9 inches broad and 12 feet 3 inches in height. Each chain consists of two tiers of links, each tier formed of 14 and 15 links alternately. These are 7 inches deep and about 1 inch thick. The arrangements of the ironwork of the tube and its connections with the main chains are generally similar to those at Chepstow.

The truss may be described as a combination of an arch and a suspension bridge, half the weight being placed on the one and half on the other, the outward thrust of the arch on the abutments being counterbalanced by the inward drag of the chains.

The life of Isambard Kingdom Brunel, Civil Engineer Part 24

You're reading novel The life of Isambard Kingdom Brunel, Civil Engineer Part 24 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


The life of Isambard Kingdom Brunel, Civil Engineer Part 24 summary

You're reading The life of Isambard Kingdom Brunel, Civil Engineer Part 24. This novel has been translated by Updating. Author: Isambard Brunel already has 594 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com