Species and Varieties, Their Origin by Mutation Part 28
You’re reading novel Species and Varieties, Their Origin by Mutation Part 28 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
A critical study of the existing evidence seems to be of great importance in order to ascertain the best way of dealing with new facts, and of estimating the value of the factors concerned. [577] It is manifest that we must be very careful and conservative in dealing with new facts that are brought to our attention, and every effort should be made to bring additional evidence to light. Many vegetable anomalies are so rare that they are met with only by the purest chance, and are then believed to be wholly new. When a white variety of some common plant is met with for the first time we generally a.s.sume that it originated on that very spot and only a short time previously. The discovery of a second locality for the same variety at once raises the question as to a common origin in the two instances. Could not the plants of the second locality have arisen from seeds transported from the first?
White varieties of many species of blue-bells and gentians are found not rarely, white-flowering plants of heather, both of _Erica Tetralix_ and _Calluna vulgaris_ occur on European heaths; white flowers of _Brunella vulgaris_, _Ononis repens_, _Thymus vulgaris_ and others may be seen in many localities in the habitats of the colored species. Pelories of l.a.b.i.ates seem to occur often in Austria, but are rare in Holland; white bilberries (_Vaccinium Myrtillus_) have many known localities throughout Europe, and nearly all the berry-bearing species in the large heath family are recorded as having white varieties.
[578] Are we to a.s.sume a single origin for all the representatives of such a variety, as we have done customarily for all the representatives of a wild species? Or can the same mutation have been repeated at different times and in distant localities? If a distinct mutation from a given species is once possible, why should it not occur twice or thrice?
A variety which seems to be new to us may only appear so, because the spot where it grows had hitherto escaped observation. _Lychnis preslii_ is a smooth variety of _Lychnis diurna_ and was observed for the first time in the year 1842 by Sekera. It grew abundantly in a grove near Munchengratz in southern Hungary. It was accompanied by the ordinary hairy type of the species. Since then it has been observed to be quite constant in the same locality, and some specimens have been collected for me there lately by Dr. Nemec, of Prague. No other native localities of this variety have been discovered, and there can be no doubt that it must have arisen from the ordinary campion near the spot where it still grows. But this change may have taken place some years before the first discovery, or perhaps one or more centuries ago. This could only be known if it could be proved that the locality had been satisfactorily investigated previously, and that the variety had not [579] been met with. Even in this case only something would be discovered about the time of the change, but nothing about its real nature.
So it is in many cases. If a variety is observed in a number of specimens at the time of its first discovery, and at a locality not studied previously, it takes the aspect of an old form of limited distribution, and little can be learned as to the circ.u.mstances under which it arose. If on the contrary it occurs in very small numbers or perhaps even in a single individual, and if the spot where it is found is located so that it could hardly have escaped previous observation, then the presumption of a recent origin seems justified.
What has to be ascertained on such occasions to give them scientific value? Three points strike me as being of the highest importance. First, the constancy of the new type; secondly, the occurrence or lack of intermediates, and last, but not least, the direct observation of a repeated production.
The first two points are easily ascertained. Whether the new type is linked with its more common supposed ancestor by intermediate steps is a query which at once strikes the botanist. It is usually recorded in such cases, and we may state at once that the general result is, that such intermediates do not occur. This is [580] of the highest importance and admits of only two explanations. One is that intermediates may be a.s.sumed to have preceded the existent developed form, and to have died out afterwards. But why should they have done so, especially in cases of recent changes? On the other hand the intermediates may be lacking because they have never existed, the change having taken place by a sudden leap, such as the mutations described in our former lectures. It is manifest that the a.s.sumption of hypothetical intermediates could only gain some probability if they had been found in some instance. Since they do not occur, the hypothesis seems wholly unsupported.
The second point is the constancy of the new type. Seeds should be saved and sown. If the plant fertilizes itself without the aid of insects, as do some evening-primroses, the seed saved from the native locality may prove wholly pure, and if it does give rise to a uniform progeny the constancy of the race may be a.s.sumed to be proved, provided that repeated trials do not bring to light any exceptions. If the offspring shows more than one type, cross-fertilization is always to be looked to as the most probable cause, and should be excluded, in order to sow pure seeds. Garden-experiments of this kind, and repeated trials, should always be combined [581] with the discovery of a presumed mutation. In many instances the authors have realized the importance of this point, and new types have been found constant from the very beginning. Many cases are known which show no reversions and even no partial reversions.
This fact throws a distinct light on our first point, as it makes the hypothesis of a slow and gradual development still more improbable.
My third point is of quite another nature and has not as yet been dealt with. But as it appeals to me as the very soul of the problem, it seems necessary to describe it in some detail. It does not refer to the new type itself, nor to any of its morphologic or hereditary attributes, but directly concerns the presumed ancestors themselves.
The peloric toad-flax in my experiment was seen to arise thrice from the same strain. Three different individuals of my original race showed a tendency to produce peloric mutations, and they did so in a number of their seeds, exactly as the mutations of the evening-primroses were repeated nearly every year. Hence the inference, that whenever we find a novelty which is really of very recent date, the parent-strain which has produced it might still be in existence on the same spot. In the case of shrubs or perennials the very parents might yet be found. [582] But it seems probable, and is especially proved in the case of the evening-primroses, that all or the majority of the representatives of the whole strain have the same tendency to mutate. If this were a general rule, it would suffice to take some pure seeds from specimens of the presumed parents and to sow and multiply the individuals to such an extent that the mutation might have a chance to be repeated.
Unfortunately, this has not as yet been done, but in my opinion it should be the first effort of any one who has the good luck to discover a new wild mutation. Specimens of the parents should be transplanted into a garden and fertilized under isolated conditions. Seeds saved from the wild plant would have little worth, as they might have been partly fertilized by the new type itself.
After this somewhat lengthy discussion of the value of observations surrounding the discovery of new wild mutations, we now come to the description of some of the more interesting cases. As a first example, I will take the globular fruited shepherd's purse, described by Solms Laubach as _Capsella heegeri_. Professor Heeger discovered one plant with deviating fruits, in a group of common shepherd's purses in the market-place near Landau in Germany, in the fall of 1897. They were nearly spherical, [583] instead of flat and purse-shaped. Their valves were thick and fleshy, while those of the ordinary form are membranaceous and dry. The capsules hardly opened and therefore differed in this point from the shepherd's purse, which readily loosens both its valves as soon as it is ripe.
Only one plant was observed; whence it came could not be determined, nor whether it had arisen from the neighboring stock of C_apsella_ or not.
The discoverer took some seed to his garden and sent some to the botanical garden at Stra.s.sburg, of which Solms-Laubach is the director.
The majority of the seeds of course were sowed naturally on the original spot. The following year some of the seeds germinated and repeated the novelty. The leaves, stems and flowers were those of the common shepherd's purse, but no decision could be reached concerning the type of this generation before the first flowers had faded and the rounded capsules had developed. Then it was seen that the _heegeri_ came true from seed. It did so both in the gardens and on the market-place, where it was observed to have multiplied and spread in some small measure. The same was noted the following year, but then the place was covered with gravel and all the plants destroyed. It is not recorded to have been seen wild since.
[584] Intermediate forms have not been met with. Some slight reversions may occur in the autumn on the smallest and weakest lateral branches.
Such reversions, however, seem to be very rare, as I have tried in vain to produce them on large and richly branched individuals, by applying all possible inducements in the form of manure and of cutting, to stimulate the production of successive generations of weaker side branches.
This constancy was proved by the experiments of Solms-Laubach, which I have repeated in my own garden during several years with seed received from him. No atavists or deviating specimens have been found among many hundreds of flowering plants.
It is important to note that within the family of the crucifers the form of the capsule and the attributes of the valves and seeds are usually considered to furnish the characteristics of genera, and this point has been elucidated at some length by Solms-Laubach. There is, however, no sufficient reason to construe a new genus on the ground of Heeger's globular fruited shepherd's purse; but as a true elementary species, and even as a good systematic species it has proved itself, and as such it is described by Solms-Laubach, who named it in honor of its discoverer.
Exactly a.n.a.logous discoveries have been [586] instead of displaying a bright yellow cup. _O. cruciata_ grows in the Adirondack Mountains, in the states of New York and Vermont, and seems to be abundant there. It has been introduced into botanical gardens and yielded a number of hybrids, especially with _O. biennis and _O. lamarckiana_, and the narrow petals of the parent-species may be met with in combination with the stature and vegetative characteristics of these last named species.
_O. cruciata_ has a purple foliage, while _biennis_ and _lamarckiana_ are green, and many of the hybrids may instantly be recognized by their purple color.
The curious attribute of the petals is not to be considered simply as a reduction in size. On anatomical inquiry it has been found that these narrow petals bear some characteristics which, on the normal plants, are limited to the calyx. Stomata and hairs, and the whole structure of the surface and inner tissues on some parts of these petals are exactly similar to those of the calyx, while on others they have retained the characteristics of petals. Sometimes there may even be seen by the naked eye green longitudinal stripes of calyx-like structure alternating with bright yellow petaloid parts. For these reasons the cruciata character may be considered as a case of sepalody of the petals, or of the petals being partly converted into sepals.
[587] It is worth while to note that as a monstrosity this occurrence is extremely rare throughout the whole vegetable kingdom, and only very few instances have been recorded.
Two cases of sudden mutations have come to my knowledge, producing this same anomaly in allied species. One has been already alluded to; it pertains to the common evening-primrose or _Oenothera biennis_, and one is a species belonging to another genus of the same family, the great hairy willow-herb or _Epilobium _hirsutum_. I propose to designate both new forms by the varietal name of _cruciata_, or _cruciatum_.
_Oenothera biennis cruciata_ was found in a native locality of the _O.
biennis itself. It consisted of only one plant, showing in all its flowers the _cruciata_ marks. In all other respects it resembled wholly the _biennis_, especially in the pure green color of its foliage, which at once excluded all suspicion of hybrid origin with the purple _O.
cruciata_. Moreover in our country this last occurs only in the cultivated state in botanical gardens.
Intermediates were not seen, and as the plant bore some pods, it was possible to test its constancy. I raised about 500 plants from its seeds, out of which more than 100 flowered in the first year. The others were partly kept through the winter and flowered next year. Seeds saved in [588] both seasons were sown on a large scale. Both the first and the succeeding generations of the offspring of the original plant came true without any exception. Intermediates are often found in hybrid cultures, and in them the character is a very variable one, but as yet they were not met with in progeny of this mutant. All these plants were exactly like _O. biennis_, with the single exception of their petals.
_Epilobium hirsutum cruciatum_ was discovered by John Rasor near Woolpit, Bury St. Edmunds, in England. It flowered in one spot, producing about a dozen stems, among large quant.i.ties of the parent-species, which is very common there, as it is elsewhere in Europe. This species is a perennial, multiplying itself by underground runners, and the stems of the new variety were observed to stand so close to each other that they might be considered as the shoots of one individual. In this case this specimen might probably be the original mutant, as the variety had not been seen on that spot in previous years, even as it has not been found elsewhere in the vicinity.
Intermediates were not observed, though the difference is a very striking one. In the cruciate flowers the broad and bright purple petals seem at first sight to be wholly wanting. They are too weak to expand and to reflex the calyx [589] as in the normal flowers of the species.
The sepals adhere to one another, and are only opened at their summit by the protruding pistils. Even the stamens hardly come to light. At the period of full bloom the flowers convey only the idea of closed buds crowned by the conspicuous white cross of the stigma. Any intermediate form would have at once betrayed itself by larger colored petals, coming out of the calyx-sheath. The cruciate petals are small and linear and greenish, recalling thereby the color of the sepals.
Mr. Rasor having sent me some flowers and some ripe capsules of his novelty, I sowed the latter in my experimental garden, where the plant flowered in large numbers and with many thousands of flowers both in 1902 and 1903. All of these plants and all of these flowers repeated the cruciate type exactly, and not the slightest impurity or tendency to partial reversion has been observed.
Thus true and constant cruciate varieties have been produced from accidentally observed initial plants, and because of their very curious characters they will no doubt be kept in botanical gardens, even if they should eventually become lost in their native localities.
At this point I might note another observation made on the wild species of _Oenothera cruciata_ [590] from the Adirondacks. Through the kindness of Dr. MacDougal, of the New York Botanical Garden, I received seeds from Sandy Hill near Lake George. When the plants, grown from these seeds, flowered, they were not a uniform lot, but exhibited two distinct types. Some had linear petals and thin flower-buds, and in others the petals were a little broader and the buds more swollen. The difference was small, but constant on all the flowers, each single plant clearly belonging to one or the other of the two types. Probably two elementary species were intermixed here, but whether one is the systematic type and the other a mutation, remains to be seen.
Nor seem these two types to exhaust the range of variability of _Oenothera cruciata_. Dr. B.L. Robinson of Cambridge, Ma.s.s., had the kindness to send me seeds from another locality in the same region. The seeds were collected in New Hamps.h.i.+re and in my garden produced a true and constant _cruciata_, but with quite different secondary characters from both the aforesaid varieties. The stems and flower-spikes and even the whole foliage were much more slender, and the calyx-tubes of the flowers were noticeably more elongated. It seems not improbable that _Oenothera cruciata_ includes a group of lesser unities, and may prove to comprise a [591] swarm of elementary species, while the original strain might even now be still in a condition of mutability. A close scrutiny in the native region is likely to reveal many unexpected features.
A very interesting novelty has already been described in a former lecture. It is the _Xanthium wootoni_, discovered in the region about Las Vegas, New Mexico, by T.D.A. c.o.c.kerell. It is similar in all respects to _X. commune_, but the burrs are more slender and the p.r.i.c.kles much less numerous, and mostly stouter at their base. It grows in the same localities as the _X. commune_, and is not recorded to occur elsewhere. Whether it is an old variety or a recent mutation it is of course impossible to decide. In a culture made in my garden from the seed sent me by Mr. c.o.c.kerell, I observed (1903) that both forms had a subvariety with brownish foliage, and, besides this, one of a pure green. Possibly this species, too, is still in a mutable condition.
Perhaps the same may be a.s.serted concerning the beautiful shrub, _Hibiscus Moscheutos_, observed in quite a number of divergent types by John W. Harshberger. They grew in a small meadow at Seaside Park, New Jersey, in a locality which had been undisturbed for years. They differed from each other in nearly all the [592] organs, in size, in the diameter of the stems, which were woody in some and more fleshy in others, in the shape of the foliage and in the flowers. More than twenty types could be distinguished and seeds were saved from a number of them, in order to ascertain whether they are constant, or whether perhaps a main stem in a mutating condition might be found among them. If this should prove to be the case, the relations between the observed forms would probably be a.n.a.logous to those between the _O. lamarckiana_ and its derivatives.
Many other varieties have sprung from the type-species under similar conditions from time to time. A fern-leaved mercury, _Mercurialis annua laciniata_, was discovered in the year 1719 by Marchant. The type was quite new at the time and maintained itself during a series of years.
The yellow deadly nightshade or _Atropa Belladonna lutea_ was found about 1850 in the Black Forest in Germany in a single spot, and has since been multiplied by seeds. It is now dispersed in botanical gardens, and seems to be quite constant. A dwarf variety of a bean, _Phaseolus lunatus_, was observed to spring from the ordinary type by a sudden leap about 1895 by W.W. Tracy, and many similar cases could be given.
The annual habit is not very favorable for [593] the discovery of new forms in the wild state. New varieties may appear, but may be crowded out the first year. The chances are much greater with perennials, and still greater with shrubs or trees. A single aberrant specimen may live for years and even for centuries, and under such conditions is pretty sure to be discovered sooner or later. Hence it is no wonder that many such cases are on record. They have this in common that the original plant of the variety has been found among a vast majority of representatives of the corresponding species. Nothing of course is directly known about its origin. Intermediate links have as a rule been wanting, and the seeds, which have often been sown, have not yielded reliable results, as no care was taken to preserve the blossoms from intercrossing with their parent-forms.
Stress should be laid upon one feature of these curious occurrences.
Relatively often the same novelty has been found twice or thrice, or even more frequently, and under conditions which make it very improbable that any relation between such occurrences might exist. The same mutation must have taken place more than once from the same main stem.
The most interesting of these facts are connected with the origin of the purple beech, which [594] is now so universally cultivated. I take the following statements from an interesting historical essay of Prof.
Jaggi. He describes three original localities. One is near the Swiss village, Buch am Irchel, and is located on the Stammberg. During the 17th century five purple beeches are recorded to have grown on this spot. Four of them have died, but one is still alive. Seedlings have germinated around this little group, and have been mostly dug up and transplanted into neighboring gardens. Nothing is known about the real origin of these plants, but according to an old doc.u.ment, it seems that about the year 1190 the purple beeches of Buch were already enjoying some renown, and attracting large numbers of pilgrims, owing to some old legend. The church of Embrach is said to have been built in connection with this legend, and was a goal for pilgrimages during many centuries.
A second native locality of the purple beech is found in a forest near Sondershausen in Thuringen, Germany, where a fine group of these trees is to be seen. They were mentioned for the first time in the latter half of the eighteenth century, but must have been old specimens long before that time. The third locality seems to be of much later origin. It is a forest near Roveredo in South Tyrol, where a new [595] university is being erected. It is only a century ago that the first specimens of the purple beech were discovered there.
As it is very improbable that the two last named localities should have received their purple beeches from the first named forest, it seems reasonable to a.s.sume that the variety must have been produced at least thrice.
The purple beech is now exceedingly common in cultivation. But Jaggi succeeded in showing that all the plants owe their origin to the original trees mentioned above, and are, including nearly all cultivated specimens with the sole exception of the vicinity of Buch, probably derived from the trees in Thuringen. They are easily multiplied by grafting, and come true from seed, at least often, and in a high proportion. Whether the original trees would yield a pure progeny if fertilized by their own pollen has as yet not been tested. The young seedlings have purple seed-leaves, and may easily be selected by this character, but they seem to be always subjected in a large measure to vicinism.
Many other instances of trees and shrubs, found in accidental specimens const.i.tuting a new variety in the wild state, might be given. The oak-leaved beech has been found in a forest of Lippe-Detmold in Germany and near Versailles, [596] whence it was introduced into horticulture by Carriere. Similarly divided and cleft leaves seem to have occurred more often in the wild state, and cut-leaved hazels are recorded from Rouen in France, birches and alders from Sweden and Lapland, where both are said to have been met with in several forests. The purple barberry was found about 1830 by Bertin, near Versailles. Weeping varieties of ashes were found wild in England and in Germany, and broom-like oaks, _Quercus pedunculata fastigiata_, are recorded from Hessen-Darmstadt, Calabria, the Pyrenees and other localities. About the real origin of all these varieties nothing is definitely known.
The "single-leaved" strawberry is a variety often seen in botanical gardens, as it is easily propagated by its runners. It was discovered wild in Lapland at the time of Linnaeus, and appeared afterwards unexpectedly in a nursery near Versailles. This happened about the year 1760 and d.u.c.h.esne tested it from seeds and found it constant. This strain, however, seems to have died out before the end of the 18th century. In a picture painted by Holbein (1495-1543), strawberry leaves can be seen agreeing exactly with the monophyllous type. The variety may thus be a.s.sumed to have arisen independently [597] at least thrice, at different periods and in distant localities.
From all these statements and a good many others which can be found in horticultural and botanical literature, it may be inferred that mutations are not so very rare in nature as is often supposed. Moreover we may conclude that it is a general rule that they are neither preceded nor accompanied by intermediate steps, and that they are ordinarily constant from seed from the first.
Why then are they not met with more often? In my opinion it is the struggle for life which is the cause of this apparent rarity; which is nothing else than the premature death of all the individuals that so vary from the common type of their species as to be incapable of development under prevailing circ.u.mstances. It is obviously without consequence whether these deviations are of a fluctuating or of a mutating nature. Hence we may conclude that useless mutations will soon die out and will disappear without leaving any progeny. Even if they are produced again and again by the same strain, but under the same unfavorable conditions, there will be no appreciable result.
Thousands of mutations may perhaps take place yearly among the plants of our immediate vicinity without any chance of being discovered. [598] We are trained to the appreciation of the differentiating marks of systematic species. When we have succeeded in discerning these as given by our local flora lists, we rest content. Meeting them again we are in the habit of greeting them with their proper names. Such is the satisfaction ensuing from this knowledge that we do not feel any inclination for further inquiry. Striking deviations, such as many varietal characters, may be remarked, but then they are considered as being of only secondary interest. Our minds are turned from the delicately shaded features which differentiate elementary species.
Even in the native field of the evening-primroses, no botanist would have discovered the rosettes with smaller or paler leaves, const.i.tuting the first signs of the new species. Only by the guidance of a distinct theoretical idea were they discovered, and having once been pointed out a closer inspection soon disclosed their number.
Variability seems to us to be very general, but very limited. The limits however, are distinctly drawn by the struggle for existence. Of course the chance for useful mutations is a very small one. We have seen that the same mutations are as a rule repeated from time to time by the same species. Now, if a useful mutation, [599] or even a wholly indifferent one, might easily be produced, it would have been so, long ago, and would at the present time simply exist as a systematic variety. If produced anew somewhere the botanist, would take it for the old variety and would omit to make any inquiry as to its local origin.
Species and Varieties, Their Origin by Mutation Part 28
You're reading novel Species and Varieties, Their Origin by Mutation Part 28 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
Species and Varieties, Their Origin by Mutation Part 28 summary
You're reading Species and Varieties, Their Origin by Mutation Part 28. This novel has been translated by Updating. Author: Hugo de Vries already has 630 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- Species and Varieties, Their Origin by Mutation Part 27
- Species and Varieties, Their Origin by Mutation Part 29