The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 20
You’re reading novel The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 20 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
Chronicle' 1844 page 374, of these bees doing so. Hermann Muller has also seen the hive-bee at work, but only on the wild small-flowered form. He gives a list 'Nature' 1873 page 45, of all the insects which he has seen visiting both the large and small-flowered forms. From his account, I suspect that the flowers of plants in a state of nature are visited more frequently by insects than those of the cultivated varieties. He has seen several b.u.t.terflies sucking the flowers of wild plants, and this I have never observed in gardens, though I have watched the flowers during many years.) It is curious for how long a time the flowers of the heartsease and of some other plants may be watched without an insect being seen to visit them. During the summer of 1841, I observed many times daily for more than a fortnight some large clumps of heartsease growing in my garden, before I saw a single humble-bee at work. During another summer I did the same, but at last saw some dark-coloured humble-bees visiting on three successive days almost every flower in several clumps; and almost all these flowers quickly withered and produced fine capsules. I presume that a certain state of the atmosphere is necessary for the secretion of nectar, and that as soon as this occurs the insects discover the fact by the odour emitted, and immediately frequent the flowers.
As the flowers require the aid of insects for their complete fertilisation, and as they are not visited by insects nearly so often as most other nectar-secreting flowers, we can understand the remarkable fact discovered by H. Muller and described by him in 'Nature,' namely, that this species exists under two forms. One of these bears conspicuous flowers, which, as we have seen, require the aid of insects, and are adapted to be cross-fertilised by them; whilst the other form has much smaller and less conspicuously coloured flowers, which are constructed on a slightly different plan, favouring self-fertilisation, and are thus adapted to ensure the propagation of the species. The self-fertile form, however, is occasionally visited, and may be crossed by insects, though this is rather doubtful.
In my first experiments on Viola tricolor I was unsuccessful in raising seedlings, and obtained only one full-grown crossed and self-fertilised plant. The former was 12 1/2 inches and the latter 8 inches in height.
On the following year several flowers on a fresh plant were crossed with pollen from another plant, which was known to be a distinct seedling; and to this point it is important to attend. Several other flowers on the same plant were fertilised with their own pollen. The average number of seeds in the ten crossed capsules was 18.7, and in the twelve self-fertilised capsules 12.83; or as 100 to 69. These seeds, after germinating on bare sand, were planted in pairs on the opposite sides of five pots. They were first measured when about a third of their full size, and the crossed plants then averaged 3.87 inches, and the self-fertilised only 2.00 inches in height; or as 100 to 52. They were kept in the greenhouse, and did not grow vigorously. Whilst in flower they were again measured to the summits of their stems (see Table 4/41), with the following result:--
TABLE 4/41. Viola tricolor.
Heights of plants measured in inches.
Column 1: Number (Name) of Pot.
Column 2: Crossed Plants.
Column 3: Self-fertilised Plants.
Pot 1 : 8 2/8 : 0 2/8.
Pot 1 : 7 4/8 : 2 4/8.
Pot 1 : 5 : 1 2/8.
Pot 2 : 5 : 6.
Pot 2 : 4 : 4.
Pot 2 : 4 4/8 : 3 1/8.
Pot 3 : 9 4/8 : 3 1/8.
Pot 3 : 3 3/8 : 1 7/8.
Pot 3 : 8 4/8 : 0 5/8.
Pot 4 : 4 7/8 : 2 1/8.
Pot 4 : 4 2/8 : 1 6/8.
Pot 4 : 4 : 2 1/8.
Pot 5 : 6 : 3.
Pot 5 : 3 3/8 : 1 4/8.
Total : 78.13 : 33.25.
The average height of the fourteen crossed plants is here 5.58 inches, and that of the fourteen self-fertilised 2.37; or as 100 to 42. In four out of the five pots, a crossed plant flowered before any one of the self-fertilised; as likewise occurred with the pair raised during the previous year. These plants without being disturbed were now turned out of their pots and planted in the open ground, so as to form five separate clumps. Early in the following summer (1869) they flowered profusely, and being visited by humble-bees set many capsules, which were carefully collected from all the plants on both sides. The crossed plants produced 167 capsules, and the self-fertilised only 17; or as 100 to 10. So that the crossed plants were more than twice the height of the self-fertilised, generally flowered first, and produced ten times as many naturally fertilised capsules.
By the early part of the summer of 1870 the crossed plants in all the five clumps had grown and spread so much more than the self-fertilised, that any comparison between them was superfluous. The crossed plants were covered with a sheet of bloom, whilst only a single self-fertilised plant, which was much finer than any of its brethren, flowered. The crossed and self-fertilised plants had now grown all matted together on the respective sides of the superficial part.i.tions still separating them; and in the clump which included the finest self-fertilised plant, I estimated that the surface covered by the crossed plants was about nine times as large as that covered by the self-fertilised plants. The extraordinary superiority of the crossed over the self-fertilised plants in all five clumps, was no doubt due to the crossed plants at first having had a decided advantage over the self-fertilised, and then robbing them more and more of their food during the succeeding seasons.
But we should remember that the same result would follow in a state of nature even to a greater degree; for my plants grew in ground kept clear of weeds, so that the self-fertilised had to compete only with the crossed plants; whereas the whole surface of the ground is naturally covered with various kinds of plants, all of which have to struggle together for existence.
The ensuing winter was very severe, and in the following spring (1871) the plants were again examined. All the self-fertilised were now dead, with the exception of a single branch on one plant, which bore on its summit a minute rosette of leaves about as large as a pea. On the other hand, all the crossed plants without exception were growing vigorously.
So that the self-fertilised plants, besides their inferiority in other respects, were more tender.
Another experiment was now tried for the sake of ascertaining how far the superiority of the crossed plants, or to speak more correctly, the inferiority of the self-fertilised plants, would be transmitted to their offspring. The one crossed and one self-fertilised plant, which were first raised, had been turned out of their pot and planted in the open ground. Both produced an abundance of very fine capsules, from which fact we may safely conclude that they had been cross-fertilised by insects. Seeds from both, after germinating on sand, were planted in pairs on the opposite sides of three pots. The naturally crossed seedlings derived from the crossed plants flowered in all three pots before the naturally crossed seedlings derived from the self-fertilised plants. When both lots were in full flower, the two tallest plants on each side of each pot were measured, and the result is shown in Table 4/42.
TABLE 4/42. Viola tricolor: seedlings from crossed and self-fertilised plants, the parents of both sets having been left to be naturally fertilised.
Heights of plants measured in inches.
Column 1: Number (Name) of Pot.
Column 2: Naturally Crossed Plants from artificially crossed Plants.
Column 3: Naturally Crossed Plants from Self-fertilised Plants.
Pot 1 : 12 1/8 : 9 6/8.
Pot 1 : 11 6/8 : 8 3/8.
Pot 2 : 13 2/8 : 9 6/8.
Pot 2 : 10 : 11 4/8.
Pot 3 : 14 4/8 : 11 1/8.
Pot 3 : 13 6/8 : 11 3/8.
Total : 75.38 : 61.88.
The average height of the six tallest plants derived from the crossed plants is 12.56 inches; and that of the six tallest plants derived from the self-fertilised plants is 10.31 inches; or as 100 to 82. We here see a considerable difference in height between the two sets, though very far from equalling that in the previous trials between the offspring from crossed and self-fertilised flowers. This difference must be attributed to the latter set of plants having inherited a weak const.i.tution from their parents, the offspring of self-fertilised flowers; notwithstanding that the parents themselves had been freely intercrossed with other plants by the aid of insects.
10. RANUNCULACEAE.--Adonis aestivalis.
The results of my experiments on this plant are hardly worth giving, as I remark in my notes made at the time, "seedlings, from some unknown cause, all miserably unhealthy." Nor did they ever become healthy; yet I feel bound to give the present case, as it is opposed to the general results at which I have arrived. Fifteen flowers were crossed and all produced fruit, containing on an average 32.5 seeds; nineteen flowers were fertilised with their own pollen, and they likewise all yielded fruit, containing a rather larger average of 34.5 seeds; or as 100 to 106. Seedlings were raised from these seeds. In one of the pots all the self-fertilised plants died whilst quite young; in the two others, the measurements were as follows:
TABLE 4/43. Adonis aestivalis.
Heights of plants measured in inches.
Column 1: Number (Name) of Pot.
Column 2: Crossed Plants.
Column 3: Self-fertilised Plants.
Pot 1 : 14 : 13 4/8.
Pot 1 : 13 4/8 : 13 4/8.
Pot 2 : 16 2/8 : 15 2/8.
Pot 2 : 13 2/8 : 15.
Total : 57.00 : 57.25.
The average height of the four crossed plants is 14.25, and that of the four self-fertilised plants 14.31; or as 100 to 100.4; so that they were in fact of equal height. According to Professor H. Hoffman, this plant is proterandrous (4/7. 'Zur Speciesfrage' 1875 page 11.); nevertheless it yields plenty of seeds when protected from insects.
Delphinium consolida.
It has been said in the case of this plant, as of so many others, that the flowers are fertilised in the bud, and that distinct plants or varieties can never naturally intercross. (4/8. Decaisne 'Comptes-Rendus' July 1863 page 5.) But this is an error, as we may infer, firstly from the flowers being proterandrous,--the mature stamens bending up, one after the other, into the pa.s.sage which leads to the nectary, and afterwards the mature pistils bending in the same direction; secondly, from the number of humble-bees which visit the flowers (4/9. Their structure is described by H. Muller 'Befruchtung'
etc., page 122.); and thirdly, from the greater fertility of the flowers when crossed with pollen from a distinct plant than when spontaneously self-fertilised. In the year 1863 I enclosed a large branch in a net, and crossed five flowers with pollen from a distinct plant; these yielded capsules containing on an average 35.2 very fine seeds, with a maximum of forty-two in one capsule. Thirty-two other flowers on the same branch produced twenty-eight spontaneously self-fertilised capsules, containing on an average 17.2 seeds, with a maximum in one of thirty-six seeds. But six of these capsules were very poor, yielding only from one to five seeds; if these are excluded, the remaining twenty-two capsules give an average of 20.9 seeds, though many of these seeds were small. The fairest ratio, therefore, for the number of seeds produced by a cross and by spontaneous self-fertilisation is as 100 to 59. These seeds were not sown, as I had too many other experiments in progress.
The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 20
You're reading novel The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 20 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 20 summary
You're reading The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 20. This novel has been translated by Updating. Author: Charles Darwin already has 740 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 19
- The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 21