The Principles of Scientific Management Part 3

You’re reading novel The Principles of Scientific Management Part 3 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

"Now, Schmidt, you are a first-cla.s.s pig-iron handler and know your business well. You have been handling at the rate of 12 and a half tons per day. I have given considerable study to handling pig iron, and feel sure that you could do a much larger day's work than you have been doing. Now don't you think that if you really tried you could handle 47 tons of pig iron per day, instead of 12 and a half tons?"

What do you think Schmidt's answer would be to this?

Schmidt started to work, and all day long, and at regular intervals, was told by the man who stood over him with a watch, "Now pick up a pig and walk. Now sit down and rest. Now walk--now rest," etc. He worked when he was told to work, and rested when he was told to rest, and at half-past five in the afternoon had his 47 and a half tons loaded on the car. And he practically never failed to work at this pace and do the task that was set him during the three years that the writer was at Bethlehem. And throughout this time he averaged a little more than $1.85 per day, whereas before he had never received over $1.15 per day, which was the ruling rate of wages at that time in Bethlehem. That is, he received 60 per cent. higher wages than were paid to other men who were not working on task work. One man after another was picked out and trained to handle pig iron at the rate of 47 and a half tons per day until all of the pig iron was handled at this rate, and the men were receiving 60 per cent. more wages than other workmen around them.

The writer has given above a brief description of three of the four elements which const.i.tute the essence of scientific management: first, the careful selection of the workman, and, second and third, the method of first inducing and then training and helping the workman to work according to the scientific method. Nothing has as yet been said about the science of handling pig iron. The writer trusts, however, that before leaving this ill.u.s.tration the reader will be thoroughly convinced that there is a science of handling pig iron, and further that this science amounts to so much that the man who is suited to handle pig iron cannot possibly understand it, nor even work in accordance with the laws of this science, without the help of those who are over him.

The writer came into the machine-shop of the Midvale Steel Company in 1878, after having served an apprentices.h.i.+p as a pattern-maker and as a machinist. This was close to the end of the long period of depression following the panic of 1873, and business was so poor that it was impossible for many mechanics to get work at their trades. For this reason he was obliged to start as a day laborer instead of working as a mechanic. Fortunately for him, soon after he came into the shop the clerk of the shop was found stealing. There was no one else available, and so, having more education than the other laborers (since he had been prepared for college) he was given the position of clerk. Shortly after this he was given work as a machinist in running one of the lathes, and, as he turned out rather more work than other machinists were doing on similar lathes, after several months was made gang boss over the lathes.

Almost all of the work of this shop had been done on piece work for several years. As was usual then, and in fact as is still usual in most of the shops in this country, the shop was really run by the workmen, and not by the bosses. The workmen together had carefully planned just how fast each job should be done, and they had set a pace for each machine throughout the shop, which was limited to about one-third of a good day's work. Every new workman who came into the shop was told at once by the other men exactly how much of each kind of work he was to do, and unless he obeyed these instructions he was sure before long to be driven out of the place by the men.

As soon as the writer was made gang-boss, one after another of the men came to him and talked somewhat as follows:

"Now, Fred we're very glad to see that you've been made gang-boss. You know the game all right, and we're sure that you're not likely to be a piece-work hog. You come along with us, and every-thing will be all right, but if you try breaking any of these rates you can be mighty sure that we'll throw you over the fence."

The writer told them plainly that he was now working on the side of the management, and that he proposed to do whatever he could to get a fair day's work out of the lathes. This immediately started a war; in most cases a friendly war, because the men who were under him were his personal friends, but none the less a war, which as time went on grew more and more bitter. The writer used every expedient to make them do a fair day's work, such as discharging or lowering the wages of the more stubborn men who refused to make any improvement, and such as lowering the piece-work price, hiring green men, and personally teaching them how to do the work, with the promise from them that when they had learned how, they would then do a fair day's work. While the men constantly brought such pressure to bear (both inside and outside the works) upon all those who started to increase their output that they were finally compelled to do about as the rest did, or else quit. No one who has not had this experience can have an idea of the bitterness which is gradually developed in such a struggle. In a war of this kind the workmen have one expedient which is usually effective. They use their ingenuity to contrive various ways in which the machines which they are running are broken or damaged--apparently by accident, or in the regular course of work--and this they always lay at the door of the foreman, who has forced them to drive the machine so hard that it is overstrained and is being ruined. And there are few foremen indeed who are able to stand up against the combined pressure of all of the men in the shop. In this case the problem was complicated by the fact that the shop ran both day and night.

The writer had two advantages, however, which are not possessed by the ordinary foreman, and these came, curiously enough, from the fact that he was not the son of a working man.

First, owing to the fact that he happened not to be of working parents, the owners of the company believed that he had the interest of the works more at heart than the other workmen, and they therefore had more confidence in his word than they did in that of the machinists who were under him. So that, when the machinists reported to the Superintendent that the machines were being smashed up because an incompetent foreman was overstraining them, the Superintendent accepted the word of the writer when he said that these men were deliberately breaking their machines as a part of the piece-work war which was going on, and he also allowed the writer to make the only effective answer to this Vandalism on the part of the men, namely: "There will be no more accidents to the machines in this shop. If any part of a machine is broken the man in charge of it must pay at least a part of the cost of its repair, and the fines collected in this way will all be handed over to the mutual beneficial a.s.sociation to help care for sick workmen." This soon stopped the willful breaking of machines.

Second. If the writer had been one of the workmen, and had lived where they lived, they would have brought such social pressure to bear upon him that it would have been impossible to have stood out against them.

He would have been called "scab" and other foul names every time he appeared on the street, his wife would have been abused, and his children would have been stoned. Once or twice he was begged by some of his friends among the workmen not to walk home, about two and a half miles along the lonely path by the side of the railway. He was told that if he continued to do this it would be at the risk of his life. In all such cases, however, a display of timidity is apt to increase rather than diminish the risk, so the writer told these men to say to the other men in the shop that he proposed to walk home every night right up that railway track; that he never had carried and never would carry any weapon of any kind, and that they could shoot and be d------.

After about three years of this kind of struggling, the output of the machines had been materially increased, in many cases doubled, and as a result the writer had been promoted from one gang-boss-s.h.i.+p to another until he became foreman of the shop. For any right-minded man, however, this success is in no sense a recompense for the bitter relations which he is forced to maintain with all of those around him. Life which is one continuous struggle with other men is hardly worth living. His workman friends came to him continually and asked him, in a personal, friendly way, whether he would advise them, for their own best interest, to turn out more work. And, as a truthful man, he had to tell them that if he were in their place he would fight against turning out any more work, just as they were doing, because under the piece-work system they would be allowed to earn no more wages than they had been earning, and yet they would be made to work harder.

Soon after being made foreman, therefore, he decided to make a determined effort to in some way change the system of management, so that the interests of the workmen and the management should become the same, instead of antagonistic. This resulted, some three years later, in the starting of the type of management which is described in papers presented to the American Society of Mechanical Engineers ent.i.tled "A Piece-Rate System" and "Shop Management."

In preparation for this system the writer realized that the greatest obstacle to harmonious cooperation between the workmen and the management lay in the ignorance of the management as to what really const.i.tutes a proper day's work for a workman. He fully realized that although he was foreman of the shop, the combined knowledge and skill of the workmen who were under him was certainly ten times as great as his own. He therefore obtained the permission of Mr. William Sellers, who was at that time the President of the Midvale Steel Company, to spend some money in a careful, scientific study of the time required to do various kinds of work.

Mr. Sellers allowed this more as a reward for having, to a certain extent, "made good" as foreman of the shop in getting more work out of the men, than for any other reason. He stated, however, that he did not believe that any scientific study of this sort would give results of much value.

Among several investigations which were undertaken at this time, one was an attempt to find some rule, or law, which would enable a foreman to know in advance how much of any kind of heavy laboring work a man who was well suited to his job ought to do in a day; that is, to study the tiring effect of heavy labor upon a first-cla.s.s man. Our first step was to employ a young college graduate to look up all that had been written on the subject in English, German, and French. Two cla.s.ses of experiments had been made: one by physiologists who were studying the endurance of the human animal, and the other by engineers who wished to determine what fraction of a horse-power a man-power was. These experiments had been made largely upon men who were lifting loads by means of turning the crank of a winch from which weights were suspended, and others who were engaged in walking, running, and lifting weights in various ways. However, the records of these investigations were so meager that no law of any value could be deduced from them. We therefore started a series of experiments of our own.

Two first-cla.s.s laborers were selected, men who had proved themselves to be physically powerful and who were also good steady workers. These men were paid double wages during the experiments, and were told that they must work to the best of their ability at all times, and that we should make certain tests with them from time to time to find whether they were "soldiering" or not, and that the moment either one of them started to try to deceive us he would be discharged. They worked to the best of their ability throughout the time that they were being observed.

Now it must be clearly understood that in these experiments we were not trying to find the maximum work that a man could do on a short spurt or for a few days, but that our endeavor was to learn what really const.i.tuted a full day's work for a first-cla.s.s man; the best day's work that a man could properly do, year in and year out, and still thrive under. These men were given all kinds of tasks, which were carried out each day under the close observation of the young college man who was conducting the experiments, and who at the same time noted with a stop-watch the proper time for all of the motions that were made by the men. Every element in any way connected with the work which we believed could have a bearing on the result was carefully studied and recorded.

What we hoped ultimately to determine was what fraction of a horse-power a man was able to exert, that is, how many foot-pounds of work a man could do in a day.

After completing this series of experiments, therefore, each man's work for each day was translated into foot-pounds of energy, and to our surprise we found that there was no constant or uniform relation between the foot-pounds of energy which the man exerted during a day and the tiring effect of his work. On some kinds of work the man would be tired out when doing perhaps not more than one-eighth of a horse-power, while in others he would be tired to no greater extent by doing half a horse-power of work.

We failed, therefore, to find any law which was an accurate guide to the maximum day's work for a first-cla.s.s workman.

A large amount of very valuable data had been obtained, which enabled us to know, for many kinds of labor, what was a proper day's work. It did not seem wise, however, at this time to spend any more money in trying to find the exact law which we were after. Some years later, when more money was available for this purpose, a second series of experiments was made, similar to the first, but some what more thorough.

This, however, resulted as the first experiments, in obtaining valuable information but not in the development of a law. Again, some years later, a third series of experiments was made, and this time no trouble was spared in our endeavor to make the work thorough. Every minute element which could in anyway affect the problem was carefully noted and studied, and two college men devoted about three months to the experiments. After this data was again translated into foot-pounds of energy exerted for each man each day, it became perfectly clear that there is no direct relation between the horse-power which a man exerts (that is, his foot-pounds of energy per day) and the tiring effect of the work on the man. The writer, however, was quite as firmly convinced as ever that some definite, clear-cut law existed as to what const.i.tutes a full day's work for a first-cla.s.s laborer, and our data had been so carefully collected and recorded that he felt sure that the necessary information was included somewhere in the records. The problem of developing this law from the acc.u.mulated facts was therefore handed over to Mr. Carl G. Barth, who is a better mathematician than any of the rest of us, and we decided to investigate the problem in a new way, by graphically representing each element of the work through plotting curves, which should give us, as it were, a bird's-eye view of every element. In a comparatively short time Mr. Barth had discovered the law governing the tiring effect of heavy labor on a first-cla.s.s man. And it is so simple in its nature that it is truly remarkable that it should not have been discovered and clearly understood years before. The law which was developed is as follows:

The law is confined to that cla.s.s of work in which the limit of a man's capacity is reached because he is tired out. It is the law of heavy laboring, corresponding to the work of the cart horse, rather than that of the trotter. Practically all such work consists of a heavy pull or a push on the man's arms, that is, the man's strength is exerted by either lifting or pus.h.i.+ng something which he grasps in his hands. And the law is that for each given pull or push on the man's arms it is possible for the workman to be under load for only a definite percentage of the day.

For example, when pig iron is being handled (each pig weighing 92 pounds), a first-cla.s.s workman can only be under load 43 per cent of the day. He must be entirely free from load during 57 per cent of the day.

And as the load becomes lighter, the percentage of the day under which the man can remain under load increases. So that, if the workman is handling a half-pig, weighing 46 pounds, he can then be under load 58 per cent of the day, and only has to rest during 42 per cent. As the weight grows lighter the man can remain under load during a larger and larger percentage of the day, until finally a load is reached which he can carry in his hands all day long without being tired out. When that point has been arrived at this law ceases to be useful as a guide to a laborer's endurance, and some other law must be found which indicates the man's capacity for work.

When a laborer is carrying a piece of pig iron weighing 92 pounds in his hands, it tires him about as much to stand still under the load as it does to walk with it, since his arm muscles are under the same severe tension whether he is moving or not. A man, however, who stands still under a load is exerting no horse-power whatever, and this accounts for the fact that no constant relation could be traced in various kinds of heavy laboring work between the foot-pounds of energy exerted and the tiring effect of the work on the man. It will also be clear that in all work of this kind it is necessary for the arms of the workman to be completely free from load (that is, for the workman to rest) at frequent intervals. Throughout the time that the man is under a heavy load the tissues of his arm muscles are in process of degeneration, and frequent periods of rest are required in order that the blood may have a chance to restore these tissues to their normal condition.

To return now to our pig-iron handlers at the Bethlehem Steel Company.

If Schmidt had been allowed to attack the pile of 47 tons of pig iron without the guidance or direction of a man who understood the art, or science, of handling pig iron, in his desire to earn his high wages he would probably have tired himself out by 11 or 12 o'clock in the day. He would have kept so steadily at work that his muscles would not have had the proper periods of rest absolutely needed for recuperation, and he would have been completely exhausted early in the day. By having a man, however, who understood this law, stand over him and direct his work, day after day, until he acquired the habit of resting at proper intervals, he was able to work at an even gait all day long without unduly tiring himself.

Now one of the very first requirements for a man who is fit to handle pig iron as a regular occupation that he shall be so stupid and so phlegmatic that he more nearly resembles in his mental make-up the ox than any other type. The man who is mentally alert and intelligent is for this very reason entirely unsuited to what would, for him, be the grinding monotony of work of this character. Therefore the workman who is best suited to handling pig iron is unable to understand the real science of doing this cla.s.s of work. He is so stupid that the word "percentage" has no meaning to him, and he must consequently be trained by a man more intelligent than himself into the habit of working in accordance with the laws of this science before he can be successful.

The writer trusts that it is now clear that even in the case of the most elementary form of labor that is known, there is a science, and that when the man best suited to this cla.s.s of work has been carefully selected, when the science of doing the work has been developed, and when the carefully selected man has been trained to work in accordance with this science, the results obtained must of necessity be overwhelmingly greater than those which are possible under the plan of "initiative and incentive."

Let us, however, again turn to the case of these pig-iron handlers, and see whether, under the ordinary type of management, it would not have been possible to obtain practically the same results.

The writer has put the problem before many good managers, and asked them whether, under premium work, piece work, or any of the ordinary plans of management, they would be likely even to approximate 47 tons* per man per day, and not a man has suggested that an output of over 18 to 25 tons could be attained by any of the ordinary expedients. It will be remembered that the Bethlehem men were loading only 12 1/2 tons per man.

[*Footnote: Many people have questioned the accuracy of the statement that first-cla.s.s workmen can load 47 1/2 tons of pig iron from the ground on to a car in a day. For those who are skeptical, therefore, the following data relating to this work are given:

First. That our experiments indicated the existence of the following law: that a first-cla.s.s laborer, suited to such work as handling pig iron, could be under load only 42 per cent of the day and must be free from load 58 per cent of the day.

Second. That a man in loading pig iron from piles placed on the ground in an open field on to a car which stood on a track adjoining these piles, ought to handle (and that they did handle regularly) 47 1/2 long tons (2240 pounds per ton) per day.

That the price paid for loading this pig iron was 3.9 cents per ton, and that the men working at it averaged $1.85 per day, whereas, in the past, they had been paid only $1.15 per day.

In addition to these facts, the following are given:

47 1/2 long tons equal 106,400 pounds of pig iron per day.

At 92 pounds per pig, equals 1156 pigs per day.

42 per cent. of a day under load equals 600 minutes; multiplied by 0.42 equals 252 minutes under load.

252 minutes divided by 1156 pigs equals 0.22 minutes per pig under load.

A pig-iron handler walks on the level at the rate of one foot in 0.006 minutes. The average distance of the piles of pig iron from the car was 36 feet. It is a fact, however, that many of the pig-iron handlers ran with their pig as soon as they reached the inclined plank. Many of them also would run down the plank after loading the car. So that when the actual loading went on, many of them moved at a faster rate than is indicated by the above figures. Practically the men were made to take a rest, generally by sitting down, after loading ten to twenty pigs. This rest was in addition to the time which it took them to walk back from the car to the pile. It is likely that many of those who are skeptical about the possibility of loading this amount of pig iron do not realize that while these men were walking back they were entirely free from load, and that therefore their muscles had, during that time, the opportunity for recuperation. It will be noted that with an average distance of 36 feet of the pig iron from the car, these men walked about eight miles under load each day and eight miles free from load.

If any one who is interested in these figures will multiply them and divide them, one into the other, in various ways, he will find that all of the facts stated check up exactly.]

To go into the matter in more detail, however: As to the scientific selection of the men, it is a fact that in this gang of 75 pig-iron handlers only about one man in eight was physically capable of handling 47 1/2 tons per day. With the very best of intentions, the other seven out of eight men were physically unable to work at this pace. Now the one man in eight who was able to do this work was in no sense superior to the other men who were working on the gang. He merely happened to be a man of the type of the ox,--no rare specimen of humanity, difficult to find and therefore very highly prized. On the contrary, he was a man so stupid that he was unfitted to do most kinds of laboring work, even. The selection of the man, then, does not involve finding some extraordinary individual, but merely picking out from among very ordinary men the few who are especially suited to this type of work. Although in this particular gang only one man in eight was suited to doing the work, we had not the slightest difficulty in getting all the men who were needed--some of them from inside of the works and others from the neighboring country--who were exactly suited to the job.

Under the management of "initiative and incentive" the att.i.tude of the management is that of "putting the work up to the workmen." What likelihood would there be, then, under the old type of management, of these men properly selecting themselves for pig-iron handling? Would they be likely to get rid of seven men out of eight from their own gang and retain only the eighth man? No! And no expedient could be devised which would make these men properly select themselves. Even if they fully realized the necessity of doing so in order to obtain high wages (and they are not sufficiently intelligent properly to grasp this necessity), the fact that their friends or their brothers who were working right alongside of them would temporarily be thrown out of a job because they were not suited to this kind of work would entirely prevent them from properly selecting themselves, that is, from removing the seven out of eight men on the gang who were unsuited to pig-iron handling.

As to the possibility, under the old type of management, of inducing these pig-iron handlers (after they had been properly selected) to work in accordance with the science of doing heavy laboring, namely, having proper scientifically determined periods of rest in close sequence to periods of work. As has been indicated before, the essential idea of the ordinary types of management is that each workman has become more skilled in his own trade than it is possible for any one in the management to be, and that, therefore, the details of how the work shall best be done must be left to him. The idea, then, of taking one man after another and training him under a competent teacher into new working habits until he continually and habitually works in accordance with scientific laws, which have been developed by some one else, is directly antagonistic to the old idea that each workman can best regulate his own way of doing the work. And besides this, the man suited to handling pig iron is too stupid properly to train himself. Thus it will be seen that with the ordinary types of management the development of scientific knowledge to replace rule of thumb, the scientific selection of the men, and inducing the men to work in accordance with these scientific principles are entirely out of the question. And this because the philosophy of the old management puts the entire responsibility upon the workmen, while the philosophy of the new places a great part of it upon the management.

With most readers great sympathy will be aroused because seven out of eight of these pig-iron handlers were thrown out of a job. This sympathy is entirely wasted, because almost all of them were immediately given other jobs with the Bethlehem Steel Company. And indeed it should be understood that the removal of these men from pig-iron handling, for which they were unfit, was really a kindness to themselves, because it was the first step toward finding them work for which they were peculiarly fitted, and at which, after receiving proper training, they could permanently and legitimately earn higher wages.

Although the reader may be convinced that there is a certain science back of the handling of pig iron, still it is more than likely that he is still skeptical as to the existence of a science for doing other kinds of laboring. One of the important objects of this paper is to convince its readers that every single act of every workman can be reduced to a science. With the hope of fully convincing the reader of this fact, therefore, the writer proposes to give several more simple ill.u.s.trations from among the thousands which are at hand.

For example, the average man would question whether there is much of any science in the work of shoveling. Yet there is but little doubt, if any intelligent reader of this paper were deliberately to set out to find what may be called the foundation of the science of shoveling, that with perhaps 15 to 20 hours of thought and a.n.a.lysis he would be almost sure to have arrived at the essence of this science. On the other hand, so completely are the rule-of-thumb ideas still dominant that the writer has never met a single shovel contractor to whom it had ever even occurred that there was such a thing as the science of shoveling. This science is so elementary as to be almost self-evident.

For a first-cla.s.s shoveler there is a given shovel load at which he will do his biggest day's work. What is this shovel load? Will a first-cla.s.s man do more work per day with a shovel load of 5 pounds, 10 pounds, 15 pounds, 20, 25, 30, or 40 pounds? Now this is a question which can be answered only through carefully made experiments. By first selecting two or three first-cla.s.s shovelers, and paying them extra wages for doing trustworthy work, and then gradually varying the shovel load and having all the conditions accompanying the work carefully observed for several weeks by men who were used to experimenting, it was found that a first-cla.s.s man would do his biggest day's work with a shovel load of about 21 pounds. For instance, that this man would shovel a larger tonnage per day with a 21-pound load than with a 24-pound load or than with an 18-pound load on his shovel. It is, of course, evident that no shoveler can always take a load of exactly 21 pounds on his shovel, but nevertheless, although his load may vary 3 or 4 pounds one way or the other, either below or above the 21 pounds, he will do his biggest day's work when his average for the day is about 21 pounds.

The writer does not wish it to be understood that this is the whole of the art or science of shoveling. There are many other elements, which together go to make up this science. But he wishes to indicate the important effect which this one piece of scientific knowledge has upon the work of shoveling.

The Principles of Scientific Management Part 3

You're reading novel The Principles of Scientific Management Part 3 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


The Principles of Scientific Management Part 3 summary

You're reading The Principles of Scientific Management Part 3. This novel has been translated by Updating. Author: Frederick Winslow Taylor already has 569 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com

RECENTLY UPDATED NOVEL