History and Practice of the Art of Photography Part 9
You’re reading novel History and Practice of the Art of Photography Part 9 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
Let an ordinary calotype image or portrait be taken in the camera, and developed by gallic acid; then drawn over iodide of pota.s.sium and dilute nitric acid and exposed to full suns.h.i.+ne; while bleaching the dark parts, the light is redarkening the newly precipitated iodide in the lighter portions and thus the negative picture is converted into a positive one.
The calotype process has been applied to the art of printing, in England, but it possesses no advantages whatever over the method, with type, now so gloriously brought to perfection; and I can hardly think it will ever be made of any utility. For the benefit of the curious, however, I will give Mr. Talbot's method.
Some pages of letter-press are taken printed on one side only; and waxed, to render them more transparent; the letters are then cut out and sorted. To compose a new page lines are ruled on a sheet of white paper, and the words are formed by fixing the seperate letters in their proper order. The page being ready, a negative photograph is produced from it, from which the requisite number of positive photogenic copies may be obtained.
Another method, which requires the use of the camera, consists in employing large letters painted on rectangular pieces of wood, colored white. These are arranged in lines on a tablet or board, by slipping them into grooves which keep them steady and upright, thus forming a page on an enlarged scale. It is now placed before a camera, and a reduced image of it of the required size is thrown upon the sensitive paper. The adjustments must be kept invariable, so that the consecutive pages may not vary from one another in the size of the type. Mr. Talbot has patented his process, but what benefit he expects to derive from it, I am at a loss to determine.
Enlarged copies of calotype or Daguerreotype portraits may be obtained by throwing magnified images of them, by means of lenses, upon calotype paper.
THE CHRYSOTYPE.
A modification of Mr. Talbot's process, to which the name of Chrysotype was given by its discoverer, Sir John Herschel, was communicated in June 1843 to the Royal Society, by that distinguished philosopher.
This modification would appear to unite the simplicity of photography with all the distinctness and clearness of calotype. This preparation is as follows.
The paper is to be washed in a solution of ammonio-citrate of iron; it must then be dried, and subsequently brushed over with a solution of the ferro-sesquicyanuret of pota.s.sium. This paper, when dried in a perfectly dark room, is ready for use in the same manner as if otherwise prepared, the image being subsequently brought out by any neutral solution of gold. Such was the first declaration of his discovery, but he has since found that a neutral solution of silver is equally useful in bringing out the picture. Photographic pictures taken on this paper are distinguished by a clearness of outline foreign to all other methods.
CHAP. X.
CYANOTYPE--ENERGIATYPE--CHROMATYPE--ANTHOTYPE--AMPHITYPE AND "CRAYON DAGUERREOTYPE."
The several processes enumerated at the head of this chapter, are all discoveries of English philosophers, with the exception of the third and last named. Anthotype was first attempted by M. Ponton a French savan, although it was reserved to Mr. Hunt to bring the process to its present state. The "Crayon Daguerreotype" is an improvement made by J.
A Whipple, Esq., of Boston.
I. CYANOTYPE.
So called from the circ.u.mstance of cyanogen in its combinations with iron performing a leading part in the process. It was discovered by Sir John Herschel. The process is a simple one, and the resulting pictures are blue.
Brush the paper over with a solution of the ammonio-citrate of iron.
This solution should be sufficiently strong to resemble sherry wine in color. Expose the paper in the usual way, and pa.s.s over it very sparingly and evenly a wash of the common yellow ferro-cyanate of pota.s.s. As soon as the liquid is applied, the negative picture vanishes, and is replaced by a positive one, of a violet blue color, on a greenish yellow ground, which at a certain time possesses a high degree of sharpness, and singular beauty of tint.
A curious process was discovered by Sir John Herschel, by which dormant pictures are produced capable of developement by the breath, or by keeping in a moist atmosphere. It is as follows.
If nitrate of silver, specific gravity 1.200 be added to ferro-tartaric acid, specific gravity 1.023, a precipitate falls, which is in a great measure redissolved by a gentle heat, leaving a black sediment, which, being cleared by subsidence, a liquid of a pale yellow color is obtained, in which the further addition of the nitrate causes no turbidness. When the total quant.i.ty of the nitrated solution added amounts to about half the bulk of the ferro-tartaric acid, it is enough. The liquid so prepared does not alter if kept in the dark.
Spread on paper, and exposed wet to the suns.h.i.+ne (partly shaded) for a few seconds, no impression seems to be made, but by degrees, although withdrawn from the action of light, it developes itself spontaneously, and at length becomes very intense. But if the paper be thoroughly dried in the dark, (in which state it is of a very pale greenish yellow color,) it possesses the singular property of receiving a dormant or invisible picture, to produce which from thirty to sixty seconds'
exposure to suns.h.i.+ne is requisite. It should not be exposed too long, as not only is the ultimate effect less striking, but a picture begins to be visibly produced, which darkens spontaneously after it is withdrawn. But if the exposure be discontinued before this effect comes on, an invisible impression is the result, to develope which all that is necessary is to breathe upon it, when it immediately appears, and very speedily acquires an extraordinary intensity and sharpness, as if by magic. Instead of the breath, it may be subject to the regular action of aqueous vapor, by laying it in a blotting paper book, of which some of the outer leaves on both sides have been dampened, or by holding over warm water.
II. ENERGIATYPE.
Under this t.i.tle a process has been brought forward by Mr. Hunt. It consists of the application of a solution of succinic acid to paper, which is subsequently washed over with nitrate of silver. The image is then to be taken either in the camera or otherwise, as required, and is brought out by the application of the sulphate of iron in solution.
Although this process has not come into general use, its exact description may be interesting to the general reader, and we therefore subjoin it.
The solution with which the paper is first washed is to be prepared as follows: succinic acid, two drachms; common salt, five grains; mucilage of gum arabic, half a fluid drachm; distilled water, one fluid drachm and a half. When the paper is nearly dry, it is to be brushed over with a solution of nitrate of silver, containing a drachm of the salt, to an ounce of distilled water. It is now ready for exposure in the camera. To bring out the dormant picture it is necessary to wash it with a mixture of a drachm of concentrated solution of the green sulphate of iron and two drachms and a half of mucilage of gum arabic.
Subsequently, however, it has been found that the sulphate of iron produces upon all the salts of silver effects quite as beautiful as in the succinate. On the iodide, bromide, acetate, and benzoate, the effects are far more pleasing and striking. When pictures are produced, or the dormant camera image brought out, by the agency of sulphate of iron, it is remarkable how rapidly the effect takes place.
Engravings can be thus copied almost instantaneously, and camera views obtained in one or two minutes on almost any preparation of silver.
The common sulphate of copper solution has the same property.
III. CHROMATYPE.
Many efforts have been made to render chromatic acid an active agent in the production of photographs. M. Ponton used a paper saturated with b.i.+.c.hromate of potash, and this was one of the earliest photogenic processes. M. Becquerel improved upon this process by sizing the paper with starch previous to the application of the b.i.+.c.hromate of potash solution, which enabled him to convert the negative picture into a positive one, by the use of a solution of iodine, which combined with that portion of the starch on which the light had not acted. But by neither of these processes could clear and distinct pictures be formed.
Mr. Hunt has, however, discovered a process which is so exceedingly simple, and the resulting pictures of so pleasing a character, that, although it is not sufficiently sensitive for use in the camera, it will be found of the greatest value for copying botanical specimens, engravings, or the like.
The paper to be prepared is washed over with a solution of sulphate of copper--about one drachm to an ounce of water--and partially dried; it is then washed with a moderately strong solution of b.i.+.c.hromate of potash, and dried at a little distance from the fire. Paper thus prepared may be kept any length of time, in a portfolio, and are always ready for use.
When exposed to the suns.h.i.+ne for a time, varying with the intensity of the light, from five to fifteen or twenty minutes, the result is generally a negative picture. It is now to be washed over with a solution of nitrate of silver, which immediately produces a very beautiful deep orange picture upon a light dim colored, or sometimes perfectly white ground. This picture must be quickly fixed, by being washed in pure water, and dried. With regard to the strength of the solutions, it is a remarkable fact, that, if saturated solutions be employed, a negative picture is first produced, but if the solutions be three or four times their bulk of water, the first action of the sun's rays darkens the picture, and then a very bleaching effect follows, giving an exceedingly faint positive picture, which is brought out with great delicacy by the silver solution.
It is necessary that pure water should be used for the fixing, as the presence of any muriate damages the picture, and here arises another pleasing variation of the Chromatype. If the positive picture be placed in a very weak solution of common salt the image slowly fades out, leaving a faint negative outline. If it now be removed from the saline solution, dried, and again exposed to suns.h.i.+ne, a positive picture of a lilac color will be produced by a few minutes exposure.
Several other of the chromates may be used in this process, but none is so successful as the chromate of copper.
IV. ANTHOTYPE.
The expressed juice, alcoholic, or watery infusion of flowers, or vegetable substances, may be made the media of photogenic action. This fact was first discovered by Sir John Herschel. We have already given a few examples of this in the third chapter.
Certain precautions are necessary in extracting the coloring matter of flowers. The petals of fresh flowers are carefully selected, and crushed to a pulp in a marble mortar, either alone or with the addition of a little alcohol, and the juice expressed by squeezing the pulp in a clean linen or cotton cloth. It is then to be spread upon paper with a flat brush, and dried in the air without artificial heat. If alcohol be not added, the application on paper must be performed immediately, as the air (even in a few minutes), irrecoverably changes or destroys their color. If alcohol be present this change is much r.e.t.a.r.ded, and in some cases is entirely prevented.
Most flowers give out their coloring matter to alcohol or water. Some, however, refuse to do so, and require the addition of alkalies, others of acid, &c. Alcohol has, however, been found to enfeeble, and in many cases to discharge altogether these colors; but they are, in most cases, restored upon drying, when spread over paper. Papers tinged with vegetable colors must always be kept in the dark, and perfectly dry.
The color of a flower is by no means always, or usually, that which its expressed juice imparts to white paper. Sir John Herschel attributes these changes to the escape of carbonic acid in some cases; to a chemical alteration, depending upon the absorption of oxygen, in others; and again in others, especially where the expressed juice coagulates on standing, to a loss of vitality, or disorganization of the molecules. To secure an eveness of tint on paper, the following manipulation is recommended:--The paper should be moistened on the back by sponging and blotting off. It should then be pinned on a board, the moist side downwards, so that two of its edges (suppose the right-hand and lower ones) shall project a little beyond those of the board. The board then being inclined twenty or thirty degrees to the horizon, the alcoholic tincture (mixed with a very little water, if the petals themselves be not very juicy) is to be applied with a brush in strokes from left to right, taking care not to go over the edges which rest on the board; but to pa.s.s clearly over those that project; and observing also to carry the tint from below upwards by quick sweeping strokes, leaving no dry s.p.a.ces between them, but keeping up a continuity of wet s.p.a.ces. When all is wet, cross them by another set of strokes from above downwards, so managing the brush as to leave no floating liquid on the paper. It must then be dried as quickly as possible over a stove, or in a warm current of air, avoiding, however, such heat as may injure the tint.
In addition to the flowers already mentioned in my third chapter, the following are among those experimented upon and found to give tolerable good photographic sensitives. I can only enumerate them, referring the student, for any further information he may desire on the subject, to Mr. Hunt's work; although what I have said above is sufficient for all practical purposes; and any one, with the ambition, can readily experiment upon them, without further research, on any other flower he may choose.
Viola Odorata--or sweet sented violet, yields to alcohol a rich blue color, which it imparts in high perfection to paper
Senecio Splendens--or double purple groundsel, yields a beautiful color to paper.
The leaves of the laurel, common cabbage, and the gra.s.ses, are found sufficiently sensitive.
Common Merrigold yields an invaluable faecula, which appears identical with that produced by the Wall-flower, and Cochorus j.a.ponica mentioned before, and is very sensitive, but photographs procured upon it cannot be preserved, the color is so fugitive.
From an examination of the researches of Sir John Herschel on the coloring matter of plants, it will be seen that the action of the sun's rays is to destroy the color, effecting a sort of chromatic a.n.a.lysis, in which two distinct elements of color are separated, by destroying the one and leaving the other outstanding. The action is confined within the visible spectrum, and thus a broad distinction is exhibited between the action of the sun's rays on vegetable juices and on argentine compounds, the latter being most sensibly affected by the invisible rays beyond the violet.
It may also be observed, that the rays effective in destroying a given tint, are in a great many cases, those whose union produces a color complementary to the tint destroyed, or, at least, one belonging to that cla.s.s of colors to which such complementary tint may be preferred.
For instance, yellows tending towards orange are destroyed with more energy by the blue rays; blues by the red, orange and yellow rays; purples and pinks by yellow and green rays.
V. AMPHITYPE.
This process is a discovery of Sir John Herschel and receives its name from the fact that both negative and positive photographs can be produced by one process. The positive pictures obtained by it have a perfect resemblance to impressions of engravings with common printer's ink. The process, although not yet fully carried out, promises to be of vast utility.
Paper proper for producing an amphitype picture may be prepared either with the ferro-tartrate or the ferro-citrate of the protoxide, or the peroxide of mercury, or of the protoxide of lead, by using creams of these salts, or by successive applications of the nitrates of the respective oxides, singly or in mixture, to the paper, alternating with solutions of the ammonia-tartrate or the ammonia-citrate of iron, the latter solution being last applied, and in more or less excess. I purposely avoid stating proportions, as I have not yet been able to fix upon any which certainly succeed. Paper so prepared and dried takes a negative picture, in a time varying from half an hour to five or six hours, according to the intensity of the light; and the impression produced varies in apparent force from a faint and hardly perceptible picture to one of the highest conceivable fulness and richness both of tint and detail, the color being in this case a superb velvety brown.
This extreme richness of effect is not produced unless lead be present, either in the ingredients used, or in the paper itself. It is not, as I originally supposed, due to the presence of free tartaric acid. The pictures in this state are not permanent. They fade in the dark, though with very different degrees of rapidity, some (especially if free tartaric or citric acid be present) in a few days, while others remain for weeks unimpaired, and require whole years for their total obliteration. But though entirely faded out in appearance, the picture is only rendered dormant, and may be restored, changing its character from negative to positive, and its colors from brown to black, (in the shadows), by the following process:--A bath being prepared by pouring a small quant.i.ty of solution of pernitrate of mercury into a large quant.i.ty of water, and letting the subnitrated precipitates subside, the picture may be immersed in it, (carefully and repeatedly clearing off all air bubbles,) and allowed to remain till the picture (if any where visible,) is entirely destroyed; or if faded, till it is judged sufficient from previous experience; a term which is often marked by the appearance of a feeble positive picture, of a bright yellow hue, on the pale yellow ground of the paper. A long time (several weeks) is often required for this, but heat accelerates the action, and it is often completed in a few hours. In this state the picture is to be very thoroughly rinsed and soaked in pure warm water, and then dried.
History and Practice of the Art of Photography Part 9
You're reading novel History and Practice of the Art of Photography Part 9 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
History and Practice of the Art of Photography Part 9 summary
You're reading History and Practice of the Art of Photography Part 9. This novel has been translated by Updating. Author: Henry Hunt Snelling already has 1185 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- History and Practice of the Art of Photography Part 8
- History and Practice of the Art of Photography Part 10