Principles and Practice of Fur Dressing and Fur Dyeing Part 4
You’re reading novel Principles and Practice of Fur Dressing and Fur Dyeing Part 4 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
"This reasoning appears much less conclusive now than it did in Knapp's day. Against the last objection guncotton may be quoted as an instance of profound chemical change with no alteration in outside appearance; and it is recognized that, especially among complex organic substances, chemical reactions are rarely complete, but that stable positions are reached, so-called 'equilibria,' in which the proportion of changed and unchanged substance is dependent on concentration or other conditions; and that therefore such a precipitate might well be a mixture of gelatine with a true gelatine tannate from which further portions of tannin might be dissociated by water.
"With the clearing up of old difficulties, however, the conflict between chemical and physical theories has, as is usually the case, merely pa.s.sed into a new phase. Years ago, it was shown by Linder and Picton and others, that liquids could be obtained which were not really solutions of ions or molecules, but merely suspensions like that of clay in water, or b.u.t.ter-fat in milk; but so finely divided as to appear clear and transparent, and pa.s.s through filters like true solutions. Later, by means of the ultra-microscope their discrete particles have actually been made visible, each of them consisting of many molecules of the suspended substance. Nevertheless, these particles have many molecular properties, possessing plus or minus electrical charges; behaving like large ions under the influence of an electrical current; and mutually precipitating and neutralizing each other when positive and negative are brought together. Such solutions are called 'colloid,' and those of gelatine and tannin are of the cla.s.s, so that it is now often said that the precipitation of gelatine by tannin, and the fixation of tannin by gelatinous fibre are merely 'colloidal' and 'physical,' and not 'chemical'
phenomena. Admitting the facts, the question still arises whether the distinction between chemical and physical is not here one without a difference; and whether between the purely ionized dilute solution of a salt and the coa.r.s.ely granular clay suspension there is any point where a definite line of demarcation can be drawn. The writer inclines to the view that there is not; and that ionic and colloidal combinations are extreme cases of the same laws, both physical, and both chemical."
There are several methods which are used in tanning furs, each having its peculiar characteristics and qualities, and possessing individual advantages and disadvantages. In order to be able to judge the merits of the various processes, it is necessary to have a criterion which can serve as a basis of reference. Fahrion, a recognized authority and investigator in this field, gives a definition of leather which is usually accepted as a standard for comparison. He says: "Leather is animal skin, which on soaking in water and subsequent drying does not become hard and tinny, but remains soft and flexible; which does not decay in the presence of cold water; and which does not yield any gelatine on boiling with water." While the requirements set forth in this statement are essential for leather, and a compliance with them would also be desirable for tanned furs, a somewhat less rigorous standard of conditions to fulfil is satisfactory for the general needs and purposes of furs. The chief qualities which tanned furs must possess, with particular reference to the leather side of the pelt, are retention of softness and flexibility after being moistened by the furrier for manufacturing purposes, and subsequent drying; and freedom from a tendency to decay during this operation and thereafter. If the furs are to be dyed, the effect of the dyeing must also be considered, and the tanning must be such as to enable the dyed furs to possess the above qualities.
The most important tanning processes employed for furs are the following:
1. Salt-acid tan, or pickle.
2. Mineral tans.
3. Chamois tan.
4. Formaldehyde and similar tans.
5. Combination tans.
6. Vegetable tan.
1. SALT-ACID TAN, OR PICKLE
This is one of the most extensively used methods for tanning furs, and is also very cheap and easily applied. A typical formula for this tan is the following: A solution of salt is prepared containing about 10% of common salt, sodium chloride, and to this is added 1/23/4 ounce of sulphuric acid for each gallon of tanning liquor. The proportions may be varied within certain limits, but the figures here given are those which have proven successful in practise. The solution should be made in a wooden or earthenware container, free from any metal, as it would be attacked by the acid. The liquor is then applied to the flesh-side of the fleshed skins by means of a brush, making sure to touch all parts of the pelt.
They are then placed in a pile and allowed to remain thus until tanned, an operation which occupies a time ranging from a few hours to two or three days depending on the thickness of the skins. When the corium has lost its translucence and has become of a milky-white color throughout the entire thickness of the skin, as can be seen by viewing a cross-section, the skin may be considered tanned. In some instances, where the hair of the fur can stand immersion without injury, the skins are entered into the pickling solution and allowed to remain for 12 to 24 hours, which is generally a sufficient time to tan them in this manner.
The acid of the pickle causes the skin to swell, the salt then penetrating between the fibres of the corium, and at the same time reducing the swelling of the skin. The acid also neutralizes the alkaline products of decomposition which may form, while the salt acts as a deterrent to the progress of the putrefactive processes. When the skin is dried after tanning, and stretched and finished, a soft white leather is obtained which is permanent as long as it is kept dry. It is the salt which causes the fibres of the skin to be completely differentiated and thus prevents their adhesion.
It is interesting to note that other acids besides sulphuric can be used for the pickle, organic as well as mineral, formic acid in 1/4% solution being especially effective and giving excellent results, but is more expensive than the mineral acid. A method, which in principle is identical with the pickle, but carried out in an entirely different manner, is the lactic acid fermentation process, or "Schrot-beize" as it is called in German. The procedure is in general as follows: "The fleshed skins are placed on tables, flesh-side up, and covered with a layer of bruised barley grains, or a mixture of 3 parts of wheat bran and 2 parts of rye flour. Then the head, tail and legs are turned inward, and the skins rolled up in little cus.h.i.+ons, hair-side out, and placed in a vat.
When this is filled with the skins a solution of common salt is poured over them, and they are allowed to remain thus in a moderately cool place for 24 hours. After this time, the skins are carefully unrolled, so as not to remove any of the adhering solid materials, and turning the skins hair-side inward, they are laid flat together in pairs and placed in an empty vat. After another 24 hours they are again unpacked and replaced in another vat, care being taken each time to keep all the solid particles adhering to the flesh-side. This operation is continued and repeated until the skins are properly tanned, which takes from 10 to 14 days, depending on the weather and the temperature. The skins are then removed, rinsed free of the tanning substances, pressed, dried and finished." A somewhat modified form of this process is the so-called Russian tan, which is usually done in the following manner: 5 parts of bruised barley grains are mixed with ten parts of luke-warm water in a vat, which is then covered up. A small quant.i.ty of brewers' yeast is also added to aid in the fermentation. As soon as the mixture develops a slight heat, one part of fresh whey is added, and the fleshed skins entered into the tanning liquor in which they remain for about 12 hours. They are then tramped in the mixture so as to effect greater penetration, and left until the tanning process is complete. Whey is the milk fluid left after the casein and most of the fat have been removed from the milk by coagulation, and consists practically of a solution of all the milk-sugar or lactose, and the lactic acid of the milk, together with a small percentage of mineral salts, and a slight amount of fat. By fermentation, the milk-sugar is converted into lactic acid, which helps to effect the tan by swelling the skin.
The effectiveness of the fermentation processes depends to a considerable degree on the action of certain bacteria and yeasts. Bacteria are one-celled organisms belonging to the vegetable kingdom, and some are so small as to be scarcely visible under a microscope, while some indeed cannot be seen by any means, their existence being inferred from their effects. As they vary in size, bacteria also vary in shape, some being spherical, others in the form of long, thin rods, while still others are of a spiral shape; another common form is the dumb-bell shaped bacterium.
Some types are provided with what are known as flagella, which resemble fine hairs attached to the body of the organism, and which enable it to move about actively in liquids. The food of bacteria is always in liquid form, as only in this condition can it be absorbed. However, some kinds of bacteria attack solid substances from which they obtain their nourishment, but this is done in an indirect way, by secreting certain fluids known as enzymes, which dissolve or digest the material and convert it into a form that can easily be absorbed by the bacteria. The enzymes are non-living chemical substances, which possess the peculiar property of bringing about the chemical change of an almost indefinite amount of material upon which they act, without themselves being in any way changed. Yeasts also act in a manner similar to the bacteria in causing various chemical changes, particularly inducing fementations. In the simple "Schrot-beize,"
the starch contained in the bran or barley grains is first converted to a soluble sugar by means of enzymes secreted by the bacteria which are always present. This sugar then undergoes an acid fermentation, with the formation of lactic and acetic acids, due in this case to organisms known as the _bacterium furfuris A_ and _B_. The action of the Russian tan is similar, but quicker. In this case, the sugar is already present in soluble form, and the yeast cells cause its fermentation with the production of lactic acid. In both cases, the acids as they form swell and loosen up the skin fibres slowly, the salt penetrating between them, and keeping them separated on drying. Both methods give results which are equally good, but by the Russian tan the skins acquire a disagreeable odor, which makes this method of dressing objectionable.
The lactic acid fermentation processes have an advantage over the pickle, in that the slow formation of weak organic acids with their gradual action produce a softer leather, with a gentler 'feel,' the presence of the flour and the grains of the tan, aside from their tanning action, contributing to the fullness and softness of the leather. There is also less likelihood of the leather being subsequently affected by the presence of the acid in it, as lactic and acetic acids are much less injurious than sulphuric acid to leather. These disadvantages of the pickle can to a large degree, be overcome without any great difficulty. On the other hand, the matter of the length of time of the tanning process, shows the acid pickle at a great advantage, and so, especially for furs other than those obtained from sheep and goats, the pickle is in most cases used as the principle method of tanning. In Austria, Russia, and to a certain extent in Germany also, the "Schrot-beize" is still considerably employed, chiefly for dressing sheep and lamb skins. The dressing of the various kinds of Persian lambs, caraculs, astrachans, etc., in the native center of the industry in Buchara and surrounding districts, is also a "Schrot-beize,"
barley, rice flour or rye flour, and salt water being used to prepare the skins, the manipulations being essentially the same as those described above, although carried out in cruder and more primitive fas.h.i.+on.
2. MINERAL TANS
The basis of the tanning of furs by means of solutions of mineral compounds is the fact that the basic salts of certain metals are capable of producing leather. It has been found that compounds of aluminum such as alum or aluminum sulphate, or any other soluble neutral salt of aluminum, possess tanning powers. Other metals which are capable of forming salts of the same type are also endowed with the quality of converting skin to leather under suitable conditions, chromium and iron being the most important metals in this connection. Chemically these metals all belong to the same group, and have properties which are very similar in many respects, the characteristic of most importance for tanning purposes being the quality of forming soluble basic salts by the addition of alkalies or alkaline carbonates to solutions of their neutral salts, or in certain instances simply by the action of water upon these neutral salts. By neutral salts are meant those in which the metallic content is combined with the normal proportion of acid; while basic salts are those in which the acidic portion is present in less than the normal ratio, being partially replaced by a hydroxide group. When the acid part of the salt has been entirely replaced in this way, the compound is called a hydroxide or hydrate of the metal. Between the neutral salt and the hydroxide several different basic salts are possible, some being soluble, while others are insoluble. If into a solution containing a basic salt of either aluminum, iron or chromium a skin be entered, a part of the basic salt will be precipitated on it in insoluble form. Inasmuch as neutral salts of these metals when dissolved in water split up to a small degree, into free acid and soluble basic salt, a skin immersed in such a solution will also absorb the basic salt in an insoluble form. Upon these facts in general, depends the action of the mineral tans used in tanning furs.
A. _Alum Tan_
The alum tan is one of the oldest methods of producing leather, being employed by the Romans about two thousand years ago, and it is believed, by the Egyptians at a much earlier period. Its extensive use in Europe, however, dates from the time of the conquest of Spain by the Moors, who introduced the process.
At the present time, rabbits and moles are tanned by this process, as are also at times other furs such as muskrats, squirrels, sables, martens, etc., when a better tan is desired than that produced by the pickle.
Ordinary alum, which is a double sulphate of aluminum and pota.s.sium, and aluminum sulphate are the chief compounds used for this tan. In recent years, the aluminum sulphate has to a considerable degree replaced the alum for tanning, inasmuch as it can be cheaply obtained in a sufficiently pure form, and contains about one and one-half times as much active aluminum compound as does alum.
While the aluminum salt can be used alone for tanning, it produces a stiff, imperfect leather, so salt is always added. The ratio of the salt to the aluminum sulphate or alum can vary within rather wide limits, the mixtures used in practise ranging from one part of salt to four parts of the aluminum compound, up to equal parts of both, or even in some formulas, a greater proportion of salt than of the other const.i.tuent.
Ratios which are most common are four of alum to three of salt, or two of alum to one of salt.
When aluminum sulphate is dissolved in water, a small part of it splits up into a soluble basic salt and an equivalent amount of free acid. The reaction may be shown as follows:
Al2(SO4)3 + 2H2O = Al2(SO4)2(OH)2 + H2SO4 aluminum water basic aluminum sulphuric sulphate sulphate acid
When a skin is entered into such a solution, the free acid is absorbed, causing a swelling of the pelt. While this is taking place, a further quant.i.ty of the neutral aluminum salt splits up into more basic salt and free acid. At the same time the basic aluminum sulphate is also taken up by the skin, probably attaching itself to some of the acidic groups contained in the skin substance, in a manner a.n.a.logous to the combination of the acid with the basic groups of the skin substance. A point is reached, however, when the skin is no longer able to take up more of the basic salt, for the presence of the acid undoubtedly acts as a deterrent.
The skin, if dried after such a treatment contains a small amount of aluminum, which is insufficient to tan the pelt properly, and as a result this comes out in an undesirable and quite useless condition. If to the solution of the aluminum sulphate salt is added, a different result is obtained. To a certain extent the salt acts here as in the pickle. The skin on absorbing the free acid of the solution naturally swells, but the salt reduces this swelling, and at the same time, by penetrating between the fibres and dehydrating them, produces a leather as in the pickle.
In addition, the presence of the salt enables a greater amount of basic aluminum sulphate to be formed, and thus a greater quant.i.ty is taken up by the skin. On drying and stretching after such a treatment, a soft, flexible and stretchable leather is obtained.
The number of formulas for tanning furs by this process is legion, the principle being the same in every instance, and mixtures of salt and alum or aluminum sulphate form the basis of the various tans. Following are a few typical formulas, which have been found to be of practical value:
A solution is prepared by dissolving 7.5 lbs. of alum and 3 lbs. of common salt in 20 gallons of water. When cool, the clean, fleshed skins are entered, being paddled or drummed for a short time and then allowed to remain until tanned. By this method the hair also takes up some of the alum, and if the skins are to be dyed, unevenness may result. In order to avoid this, the tanning may be effected by brus.h.i.+ng a stronger solution on the pelt. A mixture of 4 lbs. of alum and 3 lbs. of salt, dissolved in 8 gallons of water, and made into a paste by the addition of 4 lbs. of flour, is applied to the flesh-side of the skins. These are then placed in pairs, flesh-side together, and allowed to remain in a pile until tanned.
Sometimes a second application is given. The flour may be omitted, but it serves to cause the tanning mixture to adhere better to the skins.
Still another method is the following: Into the flesh of the moist, fleshed skins is rubbed a mixture of two parts of dry powdered alum with one part of salt. After allowing time for it to be absorbed, another application is given, rubbing in well, and especially treating the thick parts. The pelts are then folded up, or rolled together, flesh-side in, and placed in a vat or tub, which is covered up to prevent drying. They are left so until tanned, as shown by examination and test. They are then rinsed, hydro-extracted and dried, and after stretching and finis.h.i.+ng, a soft, white, pliable leather is obtained.
B. _Chrome Tan_
By using chrome alum instead of ordinary alum, together with salt, skins can be tanned, but the leather formed is not altogether satisfactory.
The basic principle here is the same as in the alum tan, depending on the formation of soluble basic chrome sulphates in the solution of a neutral sulphate. The method employed at the present time, the so-called one-bath process as distinct from the two-bath process, which cannot be applied for tanning furs, involves the production of the basic chrome sulphate by the addition of an alkali or an alkaline carbonate to the solution of the neutral salt. It was Prof. Knapp who first published this process as early as 1858; but it was not until 1893 that it was shown to be of practical value, and was then patented in this country by Martin Dennis. Since that time it has been in general use with but slight modifications.
The chrome tan is used only to a limited extent in the tanning of furs, the method requiring very careful treatment and accurate supervision during the various stages of the process, and the leather coming out colored a pale-blue-green tint, which for some purposes is objectionable.
In some plants ponies and rabbits are tanned with chrome; and when the skins are to be dyed by means of certain coal tar dyes, they have to receive a chrome tannage. The leather produced by a chrome tan is very durable, and possesses great resistance to the action of water.
Any salt of chromium, with either mineral or organic acids, can be used, but chrome alum is the one most commonly employed. If a skin is entered directly into a solution of a chrome salt made basic with an alkali, the precipitation of the insoluble basic salt will take place very rapidly, and the tanning will be only superficial. The procedure is therefore first to treat the skins with a chrome solution which forms only small quant.i.ties of the basic salt. After the skins are impregnated with the solution, this is made basic, so that the real tan will take place within the skin tissues among the fibres of the corium. A common formula is the following: 5 lbs. of chrome alum are dissolved in 10 gallons of water.
The skins are entered into the solution at about 70 F. and paddled for about 2 hours, or drummed for one hour. Then a solution of three pounds of was.h.i.+ng soda is added slowly to the liquor which is then stirred up well, and the skins drummed or paddled again for an hour or two, and then left in the liquor for 12 to 24 hours till completely tanned. The skins are rinsed, and washed in 1/2% solution containing 2/3% of the weight of the skins of borax. The pelts are then well washed in clean water, hydro-extracted and dried.
C. _Iron Tan_
Tanning by means of iron salts has thus far been merely a matter of scientific interest and has not found any practical use. The principle involved is identical with that of the preceding mineral processes.
3. CHAMOIS TAN
The chamois dressing, as previously noted, is undoubtedly the oldest method of preparing leather from skin, the various fat-containing substances derived from animals, fish, birds, etc., being used for the purpose. The chief object of the fat was to coat the fibres of the skin, thus preventing their adhesion, and at the same time rendering them resistant to water. In the true chamois tan, the fat seems to have also a chemical function in contradistinction to the other which is merely physical or mechanical. For, if skins tanned by the chamois process be treated with a weak solution of an alkali, all the fatty materials should be removed thereby, but this happens only to a small extent, the pelt retaining its softness and pliability, and the other characteristic qualities of leather, indicating that the fat is combined intimately with the skin substance in a permanent fas.h.i.+on.
In tanning furs, various oils and fats are used, but not all are capable of producing a chamois tan. Among the fatty materials are mineral oils, and vegetable and animal oils and fats. Mineral oils are the distillation products of petroleum, partially liquid, and partially solid. Being inert substances, they have no tanning effect, but serve merely as water-proofing or fattening materials. Except for their oily nature they have nothing in common with fats, being quite unaffected by solutions of alkalies or of acids.
Vegetable and animal fats and oils are, when pure, neutral substances formed by the combination of fatty acids with glycerine. They possess the property of saponification, that is, of forming a soap when treated with an alkali, the soap being the alkaline salt of the fatty acid.
Under certain conditions, the fat can be split up into free fatty acid and glycerine by the action of acids, or even water alone. Some fats on long standing, split up in this way spontaneously in the presence of moist air. As a general rule, those fats which exhibit this property to a marked degree are affected by contact with the air, due to the absorption of oxygen which reacts chemically with the fats, forming what are known as oxy-fatty acids, usually less soluble, and having a higher melting point than the original fats. Vegetable and animal fatty materials are cla.s.sified on the basis of this phenomenon of absorbing oxygen from the air, those possessing this quality to a great degree being called "drying oils," others being "partially drying," or "non-drying." Olive oil, castor oil, cocoanut oil and cottonseed oil are examples of non-drying or partially-drying vegetable oils, linseed oil being the most important drying-oil in this cla.s.s. Tallow, lard, b.u.t.ter-fat, neats-foot oil are non-drying animal fats, the drying oils being seal oil, whale oil, and cod-liver oil.
[Ill.u.s.tration: FIG. 8. TRAMPING MACHINE OR "KICKER."
(_F. Blattner, Brooklyn, New York._)]
For tanning purposes, this property of absorbing oxygen is important, because only with drying oils can a true chamois tan be obtained, non-drying oils acting like mineral oils only as water-proofing materials.
The details of the chamois process are not quite clear, there being considerable difference of opinion on the matter. But all the studies on the subject tend to prove that there are at least two phases to the process: first, the mechanical covering of the fibres with the fat, this property being common to all fats or oils which may be used; and second, the combination of the fat with the skin in some chemical way, as a result of the oxidation of the fat, a characteristic found only in the drying oils. During the oxidation of the fats, the glycerine in them is converted to acrolein or acryl-aldehyde, which also aids the tanning. It was at one time supposed that the tanning action was due to this aldehyde alone, but a chamois tan can be made with fatty substances from which all the glycerine has been removed. The evidence on this question, however, is not quite conclusive.
In general, the procedure of the chamois tan is as follows: The hydro-extracted, fleshed skins are rubbed on the flesh-side with a good quality of seal-oil. They are then folded up, and put into a 'kicker,'
Principles and Practice of Fur Dressing and Fur Dyeing Part 4
You're reading novel Principles and Practice of Fur Dressing and Fur Dyeing Part 4 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
Principles and Practice of Fur Dressing and Fur Dyeing Part 4 summary
You're reading Principles and Practice of Fur Dressing and Fur Dyeing Part 4. This novel has been translated by Updating. Author: William E. Austin already has 609 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- Principles and Practice of Fur Dressing and Fur Dyeing Part 3
- Principles and Practice of Fur Dressing and Fur Dyeing Part 5