Insectivorous Plants Part 29

You’re reading novel Insectivorous Plants Part 29 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

SETTING
  • Background:
  • Font:
  • Line Height:
  • Font Size: (18)  

The antennae are of moderate length, and taper to a fine point; they differ conspicuously from those before described, in not being armed with bristles. Their bases are so abruptly curved that their tips generally rest one on each side of the middle of the bladder, but

FIG. 27. (Utricularia montana.) Bladder; about 27 times enlarged.

sometimes near the margin. Their curved bases thus form a roof over the cavity in which the valve lies; but there is always left on each side a little circular pa.s.sage into the cavity, as may be seen in the drawing, as well as a narrow pa.s.sage between the bases of the two antennae. As the bladders are subterranean, had it not been for the roof, the cavity in which the valve lies would have been liable to be blocked up with earth [page 434] and rubbish; so that the curvature of the antennae is a serviceable character. There are no bristles on the outside of the collar or peristome, as in the foregoing species.

The valve is small and steeply inclined, with its free posterior edge ab.u.t.ting against a semicircular, deeply depending collar. It is moderately transparent, and bears two pairs of short stiff bristles, in the same position as in the other species. The presence of these four bristles, in contrast with the absence of those on the antennae and collar, indicates that they are of functional importance, namely, as I believe, to prevent too large animals forcing an entrance through the valve. The many glands of diverse shapes attached to the valve and round the collar in the previous species are here absent, with the exception of about a dozen of the two-armed or transversely elongated kind, which are seated near the borders of the valve, and are mounted on very short footstalks. These glands are only the 3/4000 of an inch (.019 mm.) in length; though so small, they act as absorbents. The collar is thick, stiff, and almost semi-circular; it is formed of the same peculiar brownish tissue as in the former species.

The bladders are filled with water, and sometimes include bubbles of air. They bear internally rather short, thick, quadrifid processes arranged in approximately concentric rows. The two pairs of arms of which they are formed differ only a little in length, and stand in a peculiar position (fig. 28); the two longer ones forming one line, and the two shorter ones another parallel line. Each arm includes a small spherical ma.s.s of brownish matter, which, when crushed, breaks into angular pieces. I have no doubt that these spheres are nuclei, for closely similar ones [page 435] are present in the cells forming the walls of the bladders. Bifid processes, having rather short oval arms, arise in the usual position on the inner side of the collar.

These bladders, therefore, resemble in all essential respects the larger ones of the foregoing species. They differ chiefly in the absence of the numerous glands on the valve and round the collar, a few minute ones of one kind alone being present on the valve. They differ more conspicuously in the absence of the long bristles on the antennae and on the outside of the collar. The presence of these bristles in the previously mentioned species probably relates to the capture of aquatic animals.

FIG. 28. (Utricularia montana.) One of the quadrifid processes; much enlarged.

It seemed to me an interesting question whether the minute bladders of Utricularia montanaserved, as in the previous species, to capture animals living in the earth, or in the dense vegetation covering the trees on which this species is epiphytic; for in this case we should have a new sub-cla.s.s of carnivorous plants, namely, subterranean feeders. Many bladders, therefore, were examined, with the following results:--

[(1) A small bladder, less than 1/30 of an inch (.847 mm.) in diameter, contained a minute ma.s.s of brown, much decayed matter; and in this, a tarsus with four or five joints, terminating in a double hook, was clearly distinguished under the microscope. I suspect that it was a remnant of one of the Thysanoura. The quadrifids in contact with this decayed remnant contained either small ma.s.ses of translucent, yellowish matter, generally more [page 436] or less globular, or fine granules.

In distant parts of the same bladder, the processes were transparent and quite empty, with the exception of their solid nuclei. My son made at short intervals of time sketches of one of the above aggregated ma.s.ses, and found that they continually and completely changed their forms; sometimes separating from one another and again coalescing.

Evidently protoplasm had been generated by the absorption of some element from the decaying animal matter.

(2) Another bladder included a still smaller speck of decayed brown matter, and the adjoining quadrifids contained aggregated matter, exactly as in the last case.

(3) A third bladder included a larger organism, which was so much decayed that I could only make out that it was spinose or hairy. The quadrifids in this case were not much affected, excepting that the nuclei in the several arms differed much in size; some of them containing two ma.s.ses having a similar appearance.

(4) A fourth bladder contained an articulate organism, for I distinctly saw the remnant of a limb, terminating in a hook. The quadrifids were not examined.

(5) A fifth included much decayed matter apparently of some animal, but with no recognisable features. The quadrifids in contact contained numerous spheres of protoplasm.

(6) Some few bladders on the plant which I received from Kew were examined; and in one, there was a worm-shaped animal very little decayed, with a distinct remnant of a similar one greatly decayed.

Several of the arms of the processes in contact with these remains contained two spherical ma.s.ses, like the single solid nucleus which is properly found in each arm. In another bladder there was a minute grain of quartz, reminding me of two similar cases with Utricularia neglecta.

As it appeared probable that this plant would capture a greater number of animals in its native country than under culture, I obtained permission to remove small portions of the rhizomes from dried specimens in the herbarium at Kew. I did not at first find out that it was advisable to soak the rhizomes for two or three days, and that it was necessary to open the bladders and spread out their contents on gla.s.s; as from their state of decay and from having been dried and pressed, their nature could not otherwise be well distinguished.

Several bladders on a plant which had grown in black earth in New Granada were first examined; and four of these included remnants of animals. The first contained a hairy Acarus, so much decayed that nothing was left except its transparent coat; [page 437] also a yellow chitinous head of some animal with an internal fork, to which the oesophagus was suspended, but I could see no mandibles; also the double hook of the tarsus of some animal; also an elongated greatly decayed animal; and lastly, a curious flask-shaped organism, having the walls formed of rounded cells. Professor Claus has looked at this latter organism, and thinks that it is the sh.e.l.l of a rhizopod, probably one of the Arcellidae. In this bladder, as well as in several others, there were some unicellular Algae, and one multicellular Alga, which no doubt had lived as intruders.

A second bladder contained an Acarus much less decayed than the former one, with its eight legs preserved; as well as remnants of several other articulate animals. A third bladder contained the end of the abdomen with the two hinder limbs of an Acarus, as I believe. A fourth contained remnants of a distinctly articulated bristly animal, and of several other organisms, as well as much dark brown organic matter, the nature of which could not be made out.

Some bladders from a plant, which had lived as an epiphyte in Trinidad, in the West Indies, were next examined, but not so carefully as the others; nor had they been soaked long enough. Four of them contained much brown, translucent, granular matter, apparently organic, but with no distinguishable parts. The quadrifids in two were brownish, with their contents granular; and it was evident that they had absorbed matter. In a fifth bladder there was a flask-shaped organism, like that above mentioned. A sixth contained a very long, much decayed, worm-shaped animal. Lastly, a seventh bladder contained an organism, but of what nature could not be distinguished.]

Only one experiment was tried on the quadrifid processes and glands with reference to their power of absorption. A bladder was punctured and left for 24 hrs. in a solution of one part of urea to 437 of water, and the quadrifid and bifid processes were found much affected. In some arms there was only a single symmetrical globular ma.s.s, larger than the proper nucleus, and consisting of yellowish matter, generally translucent but sometimes granular; in others there were two ma.s.ses of different sizes, one large and the [page 438] other small; and in others there were irregularly shaped globules; so that it appeared as if the limpid contents of the processes, owing to the absorption of matter from the solution, had become aggregated sometimes round the nucleus, and sometimes into separate ma.s.ses; and that these then tended to coalesce. The primordial utricle or protoplasm lining the processes was also thickened here and there into irregular and variously shaped specks of yellowish translucent matter, as occurred in the case of Utricularia neglecta under similar treatment. These specks apparently did not change their forms.

The minute two-armed glands on the valve were also affected by the solution; for they now contained several, sometimes as many as six or eight, almost spherical ma.s.ses of translucent matter, tinged with yellow, which slowly changed their forms and positions. Such ma.s.ses were never observed in these glands in their ordinary state. We may therefore infer that they serve for absorption. Whenever a little water is expelled from a bladder containing animal remains (by the means formerly specified, more especially by the generation of bubbles of air), it will fill the cavity in which the valve lies; and thus the glands will be able to utilise decayed matter which otherwise would have been wasted.

Finally, as numerous minute animals are captured by this plant in its native country and when cultivated, there can be no doubt that the bladders, though so small, are far from being in a rudimentary condition; on the contrary, they are highly efficient traps. Nor can there be any doubt that matter is absorbed from the decayed prey by the quadrifid and bifid processes, and that protoplasm is thus generated.

What tempts animals of such diverse kinds to enter [page 439] the cavity beneath the bowed antennae, and then force their way through the little slit-like orifice between the valve and collar into the bladders filled with water, I cannot conjecture.

Tubers.--These organs, one of which is represented in a previous figure (fig. 26) of the natural size, deserve a few remarks. Twenty were found on the rhizomes of a single plant, but they cannot be strictly counted; for, besides the twenty, there were all possible gradations between a short length of a rhizome just perceptibly swollen and one so much swollen that it might be doubtfully called a tuber. When well developed, they are oval and symmetrical, more so than appears in the figure. The largest which I saw was 1 inch (25.4 mm.) in length and .45 inch (11.43 mm.) in breadth. They commonly lie near the surface, but some are buried at the depth of 2 inches. The buried ones are dirty white, but those partly exposed to the light become greenish from the development, of chlorophyll in their superficial cells. They terminate in a rhizome, but this sometimes decays and drops off . They do not contain any air, and they sink in water; their surfaces are covered with the usual papillae. The bundle of vessels which runs up each rhizome, as soon as it enters the tuber, separates into three distinct bundles, which reunite at the opposite end. A rather thick slice of a tuber is almost as translucent as gla.s.s, and is seen to consist of large angular cells, full of water and not containing starch or any other solid matter. Some slices were left in alcohol for several days, but only a few extremely minute granules of matter were precipitated on the walls of the cells; and these were much smaller and fewer than those precipitated on the cell-walls of the rhizomes and bladders. We may therefore con- [page 440] clude that the tuber do not serve as reservoirs for food, but for water during the dry season to which the plant is probably exposed. The many little bladders filled with water would aid towards the same end.

To test the correctness of this view, a small plant, growing in light peaty earth in a pot (only 4 1/2 by 4 1/2 inches outside measure) was copiously watered, and then kept without a drop of water in the hothouse. Two of the upper tubers were beforehand uncovered and measured, and then loosely covered up again. In a fortnight's time the earth in the pot appeared extremely dry; but not until the thirty-fifth day were the leaves in the least affected; they then became slightly reflexed, though still soft and green. This plant, which bore only ten tubers, would no doubt have resisted the drought for even a longer time, had I not previously removed three of the tubers and cut off several long rhizomes. When, on the thirty-fifth day, the earth in the pot was turned out, it appeared as dry as the dust on a road. All the tubers had their surfaces much wrinkled, instead of being smooth and tense. They had all shrunk, but I cannot say accurately how much; for as they were at first symmetrically oval, I measured only their length and thickness; but they contracted in a transverse line much more in one direction than in another, so as to become greatly flattened. One of the two tubers which had been measured was now three-fourths of its original length, and two-thirds of its original thickness in the direction in which it had been measured, but in another direction only one- third of its former thickness. The other tuber was one-fourth shorter, one-eighth less thick in the direction in which it had been measured, and only half as thick in another direction.

A slice was cut from one of these shrivelled tubers [page 441] and examined. The cells still contained much water and no air, but they were more rounded or less angular than before, and their walls not nearly so straight; it was therefore clear that the cells had contracted. The tubers, as long as they remain alive, have a strong attraction for water; the shrivelled one, from which a slice had been cut, was left in water for 22 hrs. 30 m., and its surface became as smooth and tense as it originally was. On the other hand, a shrivelled tuber, which by some accident had been separated from its rhizome, and which appeared dead, did not swell in the least, though left for several days in water.

With many kinds of plants, tubers, bulbs, &c. no doubt serve in part as reservoirs for water, but I know of no case, besides the present one, of such organs having been developed solely for this purpose. Prof.

Oliver informs me that two or three species of Utricularia are provided with these appendages; and the group containing them has in consequence received the name of orchidioides. All the other species of Utricularia, as well as of certain closely related genera, are either aquatic or marsh plants; therefore, on the principle of nearly allied plants generally having a similar const.i.tution, a never failing supply of water would probably be of great importance to our present species.

We can thus understand the meaning of the development of its tubers, and of their number on the same plant, amounting in one instance to at least twenty.

UTRICULARIA NELUMBIFOLIA, AMETHYSTINA, GRIFFITHII, CAERULEA, ORBICULATA, MULTICAULIS.

As I wished to ascertain whether the bladders on the rhizomes of other species of Utricularia, and of the [page 442] species of certain closely allied genera, had the same essential structure as those of Utricularia montana, and whether they captured prey, I asked Prof.

Oliver to send me fragments from the herbarium at Kew. He kindly selected some of the most distinct forms, having entire leaves, and believed to inhabit marshy ground or water. My son Francis Darwin, examined them, and has given me the following observations; but it should be borne in mind that it is extremely difficult to make out the structure of such minute and delicate objects after they have been dried and pressed.*

Utricularia nelumbifolia (Organ Mountains, Brazil).--The habitat of this species is remarkable. According to its discoverer, Mr. Gardner, it is aquatic, but "is only to be found growing in the water which collects in the bottom of the leaves of a large Tillandsia, that inhabits abundantly an arid rocky part of the mountain, at an elevation of about 5000 feet above the level of the sea. Besides the ordinary method by seed, it propagates itself by runners, which it throws out from the base of the flower-stem; this runner is always found directing itself towards the nearest Tillandsia, when it inserts its point into the water and gives origin to a new plant, which in its turn sends out another shoot. In this manner I have seen not less than six plants united." The bladders resemble those of Utricularia montana in all essential respects, even to the presence of a few minute two-armed glands on the valve. Within one bladder there was the remnant of the abdomen of some larva or crustacean of large size,

* Prof. Oliver has given ('Proc. Linn. Soc.' vol. iv. p. 169) figures of the bladders of two South American species, namely Utricularia Jamesoniana and peltata; but he does not appear to have paid particular attention to these organs.

'Travels in the Interior of Brazil, 1836-41,' p. 527. [page 443]

having a brush of long sharp bristles at the apex. Other bladders included fragments of articulate animals, and many of them contained broken pieces of a curious organism, the nature of which was not recognised by anyone to whom it was shown.

Utricularia amethystina (Guiana).--This species has small entire leaves, and is apparently a marsh plant; but it must grow in places where crustaceans exist, for there were two small species within one of the bladders. The bladders are nearly of the same shape as those of Utricularia montana, and are covered outside with the usual papillae; but they differ remarkably in the antennae being reduced to two short points, united by a membrane hollowed out in the middle. This membrane is covered with innumerable oblong glands supported on long footstalks; most of which are arranged in two rows converging towards the valve.

Some, however, are seated on the margins of the membrane; and the short ventral surface of the bladder, between the petiole and valve, is thickly covered with glands. Most of the heads had fallen off, and the footstalks alone remained; so that the ventral surface and the orifice, when viewed under a weak power, appeared as if clothed with fine bristles. The valve is narrow, and bears a few almost sessile glands.

The collar against which the edge shuts is yellowish, and presents the usual structure. From the large number of glands on the ventral surface and round the orifice, it is probable that this species lives in very foul water, from which it absorbs matter, as well as from its captured and decaying prey.

Utricularia griffithii (Malay and Borneo).--The bladders are transparent and minute; one which was measured being only 28/1000 of an inch (.711 mm.) in diameter. The antennae are of moderate length, and [page 444] project straight forward; they are united for a short s.p.a.ce at their bases by a membrane; and they bear a moderate number of bristles or hairs, not simple as heretofore, but surmounted by glands.

The bladders also differ remarkably from those of the previous species, as within there are no quadrifid, only bifid, processes. In one bladder there was a minute aquatic larva; in another the remains of some articulate animal; and in most of them grains of sand.

Utricularia caerulea (India).--The bladders resemble those of the last species, both in the general character of the antennae and in the processes within being exclusively bifid. They contained remnants of entomostracan crustaceans.

Utricularia orbiculata (India).--The orbicular leaves and the stems bearing the bladders apparently float in water. The bladders do not differ much from those of the two last species. The antennae, which are united for a short distance at their bases, bear on their outer surfaces and summits numerous, long, multicellular hairs, surmounted by glands. The processes within the bladders are quadrifid, with the four diverging arms of equal length. The prey which they had captured consisted of entomostracan crustaceans.

Utricularia multicaulis (Sikkim, India, 7000 to 11,000 feet).--The bladders, attached to rhizomes, are remarkable from the structure of the antennae. These are broad, flattened, and of large size; they bear on their margins multicellular hairs, surmounted by glands. Their bases are united into a single, rather narrow pedicel, and they thus appear like a great digitate expansion at one end of the bladder. Internally the quadrifid processes have divergent arms of equal length. The bladders contained remnants of articulate animals. [page 445]

POLYPOMPHOLYX.

This genus, which is confined to Western Australia, is characterised by having a "quadripart.i.te calyx." In other respects, as Prof. Oliver remarks,* "it is quite a Utricularia."

Polypompholyx multifida.--The bladders are attached in whorls round the summits of stiff stalks. The two antennae are represented by a minute membranous fork, the basal part of which forms a sort of hood over the orifice. This hood expands into two wings on each side of the bladder.

A third wing or crest appears to be formed by the extension of the dorsal surface of the petiole; but the structure of these three wings could not be clearly made out, owing to the state of the specimens. The inner surface of the hood is lined with long simple hairs, containing aggregated matter, like that within the quadrifid processes of the previously described species when in contact with decayed animals.

These hairs appear therefore to serve as absorbents. A valve was seen, but its structure could not be determined. On the collar round the valve there are in the place of glands numerous one-celled papillae, having very short footstalks. The quadrifid processes have divergent arms of equal length. Remains of entomostracan crustaceans were found within the bladders.

Polypompholyx tenella.--The bladders are smaller than those of the last species, but have the same general structure. They were full of dbris, apparently organic, but no remains of articulate animals could be distinguished.

* 'Proc. Linn. Soc.' vol. iv. p. 171. [page 446]

GENLISEA.

This remarkable genus is technically distinguished from Utricularia, as I hear from Prof. Oliver, by having a five-part.i.te calyx. Species are found in several parts of the world, and are said to be "herbae annuae paludosae."

Genlisea ornata (Brazil).--This species has been described and figured by Dr. Warming,* who states that it bears two kinds of leaves, called by him spathulate and utriculiferous. The latter include cavities; and as these differ much from the bladders of the foregoing species, it will be convenient to speak of them as utricles. The accompanying figure (fig. 29) of one of the utriculiferous leaves, about thrice enlarged, will ill.u.s.trate the following description by my son, which agrees in all essential points with that given by Dr. Warming. The utricle (b) is formed by a slight enlargement of the narrow blade of the leaf. A hollow neck (n), no less than fifteen times as long as the utricle itself, forms a pa.s.sage from the transverse slit-like orifice (o) into the cavity of the utricle. A utricle which measured 1/36 of an inch (.705 mm.,) in its longer diameter had a neck 15/36 (10.583 mm.) in length, and 1/100 of an inch (.254 mm.) in breadth. On each side of the orifice there is a long spiral arm or tube (a); the structure of which will be best understood by the following ill.u.s.tration. Take a narrow ribbon and wind it spirally round a thin cylinder, so that the edges come into contact along its whole length; then pinch up the two edges so as to form a little crest, which will of course wind spirally

* "Bidrag til Kundskaben om Lentibulariaceae," Copenhagen 1874. [page 447]

Insectivorous Plants Part 29

You're reading novel Insectivorous Plants Part 29 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


Insectivorous Plants Part 29 summary

You're reading Insectivorous Plants Part 29. This novel has been translated by Updating. Author: Charles Darwin already has 1176 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com

RECENTLY UPDATED NOVEL

Back to Top