Darwinism (1889) Part 12

You’re reading novel Darwinism (1889) Part 12 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

_Remarks on the Facts of Hybridity._

The facts that have now been adduced, though not very numerous, are sufficiently conclusive to prove that the old belief, of the universal sterility of hybrids and fertility of mongrels, is incorrect. The doctrine that such a universal law existed was never more than a plausible generalisation, founded on a few inconclusive facts derived from domesticated animals and cultivated plants. The facts were, and still are, inconclusive for several reasons. They are founded, primarily, on what occurs among animals in domestication; and it has been shown that domestication both tends to increase fertility, and was itself rendered possible by the fertility of those particular species being little affected by changed conditions. The exceptional fertility of all the varieties of domesticated animals does not prove that a similar fertility exists among natural varieties. In the next place, the generalisation is founded on too remote crosses, as in the case of the horse and the a.s.s, the two most distinct and widely separated species of the genus Equus, so distinct indeed that they have been held by some naturalists to form distinct genera. Crosses between the two species of zebra, or even between the zebra and the quagga, or the quagga and the a.s.s, might have led to a very different result. Again, in pre-Darwinian times it was so universally the practice to argue in a circle, and declare that the fertility of the offspring of a cross proved the ident.i.ty of species of the parents, that experiments in hybridity were usually made between very remote species and even between species of different genera, to avoid the possibility of the reply: "They are both really the same species;" and the sterility of the hybrid offspring of such remote crosses of course served to strengthen the popular belief.

Now that we have arrived at a different standpoint, and look upon a species, not as a distinct ent.i.ty due to special creation, but as an a.s.semblage of individuals which have become somewhat modified in structure, form, and const.i.tution so as to adapt them to slightly different conditions of life; which can be differentiated from other allied a.s.semblages; which reproduce their like, and which usually breed together--we require a fresh set of experiments calculated to determine the matter of fact,--whether such species crossed with their near allies do always produce offspring which are more or less sterile _inter se_.

Ample materials for such experiments exist, in the numerous "representative species" inhabiting distinct areas on a continent or different islands of a group; or even in those found in the same area but frequenting somewhat different stations.

To carry out these experiments with any satisfactory result, it will be necessary to avoid the evil effects of confinement and of too close interbreeding. If birds are experimented with, they should be allowed as much liberty as possible, a plot of ground with trees and bushes being enclosed with wire netting overhead so as to form a large open aviary.

The species experimented with should be obtained in considerable numbers, and by two separate persons, each making the opposite reciprocal cross, as explained at p. 155. In the second generation these two stocks might be themselves crossed to prevent the evil effects of too close interbreeding. By such experiments, carefully carried out with different groups of animals and plants, we should obtain a body of facts of a character now sadly wanting, and without which it is hopeless to expect to arrive at a complete solution of this difficult problem. There are, however, some other aspects of the question that need to be considered, and some theoretical views which require to be carefully examined, having done which we shall be in a condition to state the general conclusions to which the facts and reasonings at our command seem to point.

_Sterility due to changed Conditions and usually correlated with other Characters, especially with Colour._

The evidence already adduced as to the extreme susceptibility of the reproductive system, and the curious irregularity with which infertility or sterility appears in the crosses between some varieties or species while quite absent in those between others, seem to indicate that sterility is a characteristic which has a constant tendency to appear, either by itself or in correlation with other characters. It is known to be especially liable to occur under changed conditions of life; and, as such change is usually the starting-point and cause of the development of new species, we have already found a reason why it should so often appear when species become fully differentiated.

In almost all the cases of infertility or sterility between varieties or species, we have some external differences with which it is correlated; and though these differences are sometimes slight, and the amount of the infertility is not always, or even usually, proportionate to the external difference between the two forms crossed, we must believe that there is some connection between the two cla.s.ses of facts. This is especially the case as regards colour; and Mr. Darwin has collected a body of facts which go far to prove that colour, instead of being an altogether trifling and unimportant character, as was supposed by the older naturalists, is really one of great significance, since it is undoubtedly often correlated with important const.i.tutional differences.

Now colour is one of the characters that most usually distinguishes closely allied species; and when we hear that the most closely allied species of plants are infertile together, while those more remote are fertile, the meaning usually is that the former differ chiefly in the _colour_ of their flowers, while the latter differ in the form of the flowers or foliage, in habit, or in other structural characters.

It is therefore a most curious and suggestive fact, that in all the recorded cases, in which a decided infertility occurs between varieties of the same species, those varieties are distinguished by a difference of colour. The infertile varieties of Verbasc.u.m were white and yellow flowered respectively; the infertile varieties of maize were red and yellow seeded; while the infertile pimpernels were the red and the blue flowered varieties. So, the differently coloured varieties of hollyhocks, though grown close together, each reproduce their own colour from seed, showing that they are not capable of freely intercrossing.

Yet Mr. Darwin a.s.sures us that the agency of bees is necessary to carry the pollen from one plant to another, because in each flower the pollen is shed before the stigma is ready to receive it. We have here, therefore, either almost complete sterility between varieties of different colours, or a prepotent effect of pollen from a flower of the same colour, bringing about the same result.

Similar phenomena have not been recorded among animals; but this is not to be wondered at when we consider that most of our pure and valued domestic breeds are characterised by definite colours which const.i.tute one of their distinctive marks, and they are, therefore, seldom crossed with these of another colour; and even when they are so crossed, no notice would be taken of any slight diminution of fertility, since this is liable to occur from many causes. We have also reason to believe that fertility has been increased by long domestication, in addition to the fact of the original stocks being exceptionally fertile; and no experiments have been made on the differently coloured varieties of wild animals. There are, however, a number of very curious facts showing that colour in animals, as in plants, is often correlated with const.i.tutional differences of a remarkable kind, and as these have a close relation to the subject we are discussing, a brief summary of them will be here given.

_Correlation of Colour with Const.i.tutional Peculiarities._

The correlation of a white colour and blue eyes in male cats with deafness, and of the tortoise-sh.e.l.l marking with the female s.e.x of the same animal, are two well-known but most extraordinary cases. Equally remarkable is the fact, communicated to Darwin by Mr. Tegetmeier, that white, yellow, pale blue, or dun pigeons, of all breeds, have the young birds born naked, while in all other colours they are well covered with down. Here we have a case in which colour seems of more physiological importance than all the varied structural differences between the varieties and breeds of pigeons. In Virginia there is a plant called the paint-root (Lachnanthes tinctoria), which, when eaten by pigs, colours their bones pink, and causes the hoofs of all but the black varieties to drop off; so that black pigs only can be kept in the district.[58]

Buckwheat in flower is also said to be injurious to white pigs but not to black. In the Tarentino, black sheep are not injured by eating the Hyperic.u.m crispum--a species of St. John's-wort--which kills white sheep. White terriers suffer most from distemper; white chickens from the gapes. White-haired horses or cattle are subject to cutaneous diseases from which the dark coloured are free; while, both in Thuringia and the West Indies, it has been noticed that white or pale coloured cattle are much more troubled by flies than are those which are brown or black. The same law even extends to insects, for it is found that silkworms which produce white coc.o.o.ns resist the fungus disease much better than do those which produce yellow coc.o.o.ns.[59] Among plants, we have in North America green and yellow-fruited plums not affected by a disease that attacked the purple-fruited varieties. Yellow-fleshed peaches suffer more from disease than white-fleshed kinds. In Mauritius, white sugar-canes were attacked by a disease from which the red canes were free. White onions and verbenas are most liable to mildew; and red-flowered hyacinths were more injured by the cold during a severe winter in Holland than any other kinds.[60]

These curious and inexplicable correlations of colour with const.i.tutional peculiarities, both in animals and plants, render it probable that the correlation of colour with infertility, which has been detected in several cases in plants, may also extend to animals in a state of nature; and if so, the fact is of the highest importance as throwing light on the origin of the infertility of many allied species.

This will be better understood after considering the facts which will be now described.

_The Isolation of Varieties by Selective a.s.sociation._

In the last chapter I have shown that the importance of geographical isolation for the formation of new species by natural selection has been greatly exaggerated, because the very change of conditions, which is the initial power in starting such new forms, leads also to a local or stational segregation of the forms acted upon. But there is also a very powerful cause of isolation in the mental nature--the likes and dislikes--of animals; and to this is probably due the fact of the comparative rarity of hybrids in a state of nature. The differently coloured herds of cattle in the Falkland Islands, each of which keeps separate, have been already mentioned; and it may be added, that the mouse-coloured variety seem to have already developed a physiological peculiarity in breeding a month earlier than the others. Similar facts occur, however, among our domestic animals and are well known to breeders. Professor Low, one of the greatest authorities on our domesticated animals, says: "The female of the dog, when not under restraint, makes selection of her mate, the mastiff selecting the mastiff, the terrier the terrier, and so on." And again: "The Merino sheep and Heath sheep of Scotland, if two flocks are mixed together, each will breed with its own variety." Mr. Darwin has collected many facts ill.u.s.trating this point. One of the chief pigeon-fanciers in England informed him that, if free to choose, each breed would prefer pairing with its own kind. Among the wild horses in Paraguay those of the same colour and size a.s.sociate together; while in Circa.s.sia there are three races of horses which have received special names, and which, when living a free life, almost always refuse to mingle and cross, and will even attack one another. On one of the Faroe Islands, not more than half a mile in diameter, the half-wild native black sheep do not readily mix with imported white sheep. In the Forest of Dean, and in the New Forest, the dark and pale coloured herds of fallow deer have never been known to mingle; and even the curious Ancon sheep of quite modern origin have been observed to keep together, separating themselves from the rest of the flock when put into enclosures with other sheep. The same rule applies to birds, for Darwin was informed by the Rev. W.D. Fox that his flocks of white and Chinese geese kept distinct.[61]

This constant preference of animals for their like, even in the case of slightly different varieties of the same species, is evidently a fact of great importance in considering the origin of species by natural selection, since it shows us that, so soon as a slight differentiation of form or colour has been effected, isolation will at once arise by the selective a.s.sociation of the animals themselves; and thus the great stumbling-block of "the swamping effects of intercrossing," which has been so prominently brought forward by many naturalists, will be completely obviated.

If now we combine with this fact the correlation of colour with important const.i.tutional peculiarities, and, in some cases, with infertility; and consider, further, the curious parallelism that has been shown to exist between the effects of changed conditions and the intercrossing of varieties in producing either an increase or a decrease of fertility, we shall have obtained, at all events, a starting-point for the production of that infertility which is so characteristic a feature of distinct species when intercrossed. All we need, now, is some means of increasing or acc.u.mulating this initial tendency; and to a discussion of this problem we will therefore address ourselves.

_The Influence of Natural Selection upon Sterility and Fertility._

It will occur to many persons that, as the infertility or sterility of incipient species would be useful to them when occupying the same or adjacent areas, by neutralising the effects of intercrossing, this infertility might have been increased by the action of natural selection; and this will be thought the more probable if we admit, as we have seen reason to do, that variations in fertility occur, perhaps as frequently as other variations. Mr. Darwin tells us that, at one time, this appeared to him probable, but he found the problem to be one of extreme complexity; and he was also influenced against the view by many considerations which seemed to render such an origin of the sterility or infertility of species when intercrossed very improbable. The fact that species which occupy distinct areas, and which nowhere come in contact with each other, are often sterile when crossed, is one of the difficulties; but this may perhaps be overcome by the consideration that, though now isolated, they may, and often must, have been in contact at their origination. More important is the objection that natural selection could not possibly have produced the difference that often occurs between reciprocal crosses, one of these being sometimes fertile, while the other is sterile. The extremely different amounts of infertility or sterility between different species of the same genus, the infertility often bearing no proportion to the difference between the species crossed, is also an important objection. But none of these objections would have much weight if it could be clearly shown that natural selection _is_ able to increase the infertility variations of incipient species, as it is certainly able to increase and develop all useful variations of form, structure, instincts, or habits. Ample causes of infertility have been shown to exist, in the nature of the organism and the laws of correlation; the agency of natural selection is only needed to acc.u.mulate the effects produced by these causes, and to render their final results more uniform and more in accordance with the facts that exist.

About twenty years ago I had much correspondence and discussion with Mr.

Darwin on this question. I then believed that I was able to demonstrate the action of natural selection in acc.u.mulating infertility; but I could not convince him, owing to the extreme complexity of the process under the conditions which he thought most probable. I have recently returned to the question; and, with the fuller knowledge of the facts of variation we now possess, I think it may be shown that natural selection _is_, in some probable cases at all events, able to acc.u.mulate variations in infertility between incipient species.

The simplest case to consider, will be that in which two forms or varieties of a species, occupying an extensive area, are in process of adaptation to somewhat different modes of life within the same area. If these two forms freely intercross with each other, and produce mongrel offspring which are quite fertile _inter se_, then the further differentiation of the forms into two distinct species will be r.e.t.a.r.ded, or perhaps entirely prevented; for the offspring of the crossed unions will be, perhaps, more vigorous on account of the cross, although less perfectly adapted to the conditions of existence than either of the pure breeds; and this would certainly establish a powerful antagonistic influence to the further differentiation of the two forms.

Now, let us suppose that a partial sterility of the hybrids between the two forms arises, in correlation with the different modes of life and the slight external or internal peculiarities that exist between them, both of which we have seen to be real causes of infertility. The result will be that, even if the hybrids between the two forms are still freely produced, these hybrids will not themselves increase so rapidly as the two pure forms; and as these latter are, by the terms of the problem, better suited to their conditions of life than are the hybrids between them, they will not only increase more rapidly, but will also tend to supplant the hybrids altogether whenever the struggle for existence becomes exceptionally severe. Thus, the more complete the sterility of the hybrids the more rapidly will they die out and leave the two parent forms pure. Hence it will follow that, if there is greater infertility between the two forms in one part of the area than the other, these forms will be kept more pure wherever this greater infertility prevails, will therefore have an advantage at each recurring period of severe struggle for existence, and will thus ultimately supplant the less infertile or completely fertile forms that may exist in other portions of the area. It thus appears that, in such a case as here supposed, natural selection would preserve those portions of the two breeds which were most infertile with each other, or whose hybrid offspring were most infertile; and would, therefore, if variations in fertility continued to arise, tend to increase that infertility. It must particularly be noted that this effect would result, not by the preservation of the infertile variations on account of their infertility, but by the inferiority of the hybrid offspring, both as being fewer in numbers, less able to continue their race, and less adapted to the conditions of existence than either of the pure forms. It is this inferiority of the hybrid offspring that is the essential point; and as the number of these hybrids will be permanently less where the infertility is greatest, therefore those portions of the two forms in which infertility is greatest will have the advantage, and will ultimately survive in the struggle for existence.

The differentiation of the two forms into distinct species, with the increase of infertility between them, would be greatly a.s.sisted by two other important factors in the problem. It has already been shown that, with each modification of form and habits, and especially with modifications of colour, there arises a disinclination of the two forms to pair together; and this would produce an amount of isolation which would greatly a.s.sist the specialisation of the forms in adaptation to their different conditions of life. Again, evidence has been adduced that change of conditions or of mode of life is a potent cause of disturbance of the reproductive system, and, consequently, of infertility. We may therefore a.s.sume that, as the two forms adopted more and more different modes of life, and perhaps acquired also decided peculiarities of form and coloration, the infertility between them would increase or become more general; and as we have seen that every such increase of infertility would give that portion of the species in which it arose an advantage over the remaining portions in which the two varieties were more fertile together, all this induced infertility would maintain itself, and still further increase the general infertility between the two forms of the species.

It follows, then, that specialisation to separate conditions of life, differentiation of external characters, disinclination to cross-unions, and the infertility of the hybrid produce of these unions, would all proceed _pari pa.s.su_, and would ultimately lead to the production of two distinct forms having all the characteristics, physiological as well as structural, of true species.

In the case now discussed it has been supposed, that some amount of general infertility might arise in correlation with the different modes of life of two varieties or incipient species. A considerable body of facts already adduced renders it probable that this _is_ the mode in which any widespread infertility would arise; and, if so, it has been shown that, by the influence of natural selection and the known laws which affect varieties, the infertility would be gradually increased.

But, if we suppose the infertility to arise sporadically within the two forms, and to affect only a small proportion of the individuals in any area, it will be difficult, if not impossible, to show that such infertility would have any tendency to increase, or would produce any but a prejudicial effect. If, for example, five per cent of each form thus varied so as to be infertile with the other form, the result would be hardly perceptible, because the individuals which formed cross-unions and produced hybrids would const.i.tute a very small portion of the whole species; and the hybrid offspring, being at a disadvantage in the struggle for existence and being themselves infertile, would soon die out, while the much more numerous fertile portion of the two forms would increase rapidly, and furnish a sufficient number of pure-bred offspring of each form to take the place of the somewhat inferior hybrids between them whenever the struggle for existence became severe. We must suppose that the normal fertile forms would transmit their fertility to their progeny, and the few infertile forms their infertility; but the latter would necessarily lose half their proper increase by the sterility of their hybrid offspring whenever they crossed with the other form, and when they bred with their own form the tendency to sterility would die out except in the very minute proportion of the five per cent (one-twentieth) that chance would lead to pair together. Under these circ.u.mstances the incipient sterility between the two forms would rapidly be eliminated, and could never rise much above the numbers which were produced by sporadic variation each year.

It was, probably, by a consideration of some such case as this that Mr.

Darwin came to the conclusion that infertility arising between incipient species could not be increased by natural selection; and this is the more likely, as he was always disposed to minimise both the frequency and the amount even of structural variations.

We have yet to notice another mode of action of natural selection in favouring and perpetuating any infertility that may arise between two incipient species. If several distinct species are undergoing modification at the same time and in the same area, to adapt them to some new conditions that have arisen there, then any species in which the structural or colour differences that have arisen between it and its varieties or close allies were correlated with infertility of the crosses between them, would have an advantage over the corresponding varieties of other species in which there was no such physiological peculiarity. Thus, incipient species which were infertile together would have an advantage over other incipient species which were fertile, and, whenever the struggle for existence became severe, would prevail over them and take their place. Such infertility, being correlated with const.i.tutional or structural differences, would probably, as already suggested, go on increasing as these differences increased; and thus, by the time the new species became fully differentiated from its parent form (or brother variety) the infertility might have become as well marked as we usually find it to be between distinct species.

This discussion has led us to some conclusions of the greatest importance as bearing on the difficult problem of the cause of the sterility of the hybrids between distinct species. Accepting, as highly probable, the fact of variations in fertility occurring in correlation with variations in habits, colour, or structure, we see, that so long as such variations occurred only sporadically, and affected but a small proportion of the individuals in any area, the infertility could not be increased by natural selection, but would tend to die out almost as fast as it was produced. If, however, it was so closely correlated with physical variations or diverse modes of life as to affect, even in a small degree, a considerable proportion of the individuals of the two forms in definite areas, it would be preserved by natural selection, and the portion of the varying species thus affected would increase at the expense of those portions which were more fertile when crossed. Each further variation towards infertility between the two forms would be again preserved, and thus the incipient infertility of the hybrid offspring might be increased till it became so great as almost to amount to sterility. Yet further, we have seen that if several competing species in the same area were being simultaneously modified, those between whose varieties infertility arose would have an advantage over those whose varieties remained fertile _inter se_, and would ultimately supplant them.

The preceding argument, it will be seen, depends entirely upon the a.s.sumption that some amount of infertility characterises the distinct varieties which are in process of differentiation into species; and it may be objected that of such infertility there is no proof. This is admitted; but it is urged that facts have been adduced which render such infertility probable, at least in some cases, and this is all that is required. It is by no means necessary that _all_ varieties should exhibit incipient infertility, but only, some varieties; for we know that, of the innumerable varieties that occur but few become developed into distinct species, and it may be that the absence of infertility, to obviate the effects of intercrossing, is one of the usual causes of their failure. All I have attempted to show is, that _when_ incipient infertility does occur in correlation with other varietal differences, that infertility can be, and in fact must be, increased by natural selection; and this, it appears to me, is a decided step in advance in the solution of the problem.[62]

_Physiological Selection._

Another form of infertility has been suggested by Professor G.J. Romanes as having aided in bringing about the characteristic infertility or sterility of hybrids. It is founded on the fact, already noticed, that certain individuals of some species possess what may be termed selective sterility--that is, while fertile with some individuals of the species they are sterile with others, and this altogether independently of any differences of form, colour, or structure. The phenomenon, in the only form in which it has been observed, is that of "infertility or absolute sterility between two individuals, each of which is perfectly fertile with all other individuals;" but Mr. Romanes thinks that "it would not be nearly so remarkable, or physiologically improbable, that such incompatibility should run through a whole race or strain."[63]

Admitting that this may be so, though we have at present no evidence whatever in support of it, it remains to be considered whether such physiological varieties could maintain themselves, or whether, as in the cases of sporadic infertility already discussed, they would necessarily die out unless correlated with useful characters. Mr. Romanes thinks that they would persist, and urges that "whenever this one kind of variation occurs _it cannot escape the preserving agency_ of physiological selection. Hence, even if it be granted that the variation which affects the reproductive system in this particular way is a variation of comparatively rare occurrence, still, as _it must always be preserved_ whenever it does occur, its influence in the manufacture of specific types _must be c.u.mulative_." The very positive statements which I have italicised would lead most readers to believe that the alleged fact had been demonstrated by a careful working out of the process in some definite supposed cases. This, however, has nowhere been done in Mr. Romanes' paper; and as it is _the_ vital theoretical point on which any possible value of the new theory rests, and as it appears so opposed to the self-destructive effects of simple infertility, which we have already demonstrated when it occurs between the intermingled portion of two varieties, it must be carefully examined. In doing so, I will suppose that the required variation is not of "rare occurrence," but of considerable amount, and that it appears afresh each year to about the same extent, thus giving the theory every possible advantage.

Let us then suppose that a given species consists of 100,000 individuals of each s.e.x, with only the usual amount of fluctuating external variability. Let a physiological variation arise, so that 10 per cent of the whole number--10,000 individuals of each s.e.x--while remaining fertile _inter se_ become quite sterile with the remaining 90,000. This peculiarity is not correlated with any external differences of form or colour, or with inherent peculiarities of likes or dislikes leading to any choice as to the pairing of the two sets of individuals. We have now to inquire, What would be the result?

Taking, first, the 10,000 pairs of the physiological or abnormal variety, we find that each male of these might pair with any one of the whole 100,000 of the opposite s.e.x. If, therefore, there was nothing to limit their choice to particular individuals of either variety, the probabilities are that 9000 of them would pair with the opposite variety, and only 1000 with their own variety--that is, that 9000 would form sterile unions, and only _one_ thousand would form fertile unions.

Taking, next, the 90,000 normal individuals of either s.e.x, we find, that each male of these has also a choice of 100,000 to pair with. The probabilities are, therefore, that nine-tenths of them--that is, 81,000--would pair with their normal fellows, while 9000 would pair with the opposite abnormal variety forming the above-mentioned sterile unions.

Now, as the number of individuals forming a species remains constant, generally speaking, from year to year, we shall have next year also 100,000 pairs, of which the two physiological varieties will be in the proportion of eighty-one to one, or 98,780 pairs of the normal variety to 1220[64] of the abnormal, that being the proportion of the fertile unions of each. In this year we shall find, by the same rule of probabilities, that only 15 males of the abnormal variety will pair with their like and be fertile, the remaining 1205 forming sterile unions with some of the normal variety. The following year the total 100,000 pairs will consist of 99,984 of the normal, and only 16 of the abnormal variety; and the probabilities, of course, are, that the whole of these latter will pair with some of the enormous preponderance of normal individuals, and, their unions being sterile, the physiological variety will become extinct in the third year.

If now in the second and each succeeding year a similar proportion as at first (10 per cent) of the physiological variety is produced afresh from the ranks of the normal variety, the same rate of diminution will go on, and it will be found that, on the most favourable estimate, the physiological variety can never exceed 12,000 to the 88,000 of the normal form of the species, as shown by the following table:--

1st Year. 10,000 of physiological variety to 90,000 of normal variety.

2d " 1,220 + 10,000 again produced.

3d " 16 + 1,220 + 10,000 do. = 11,236 4th " O + 16 + 1,220 + 10,000 do. = 11,236 5th " O + 16 + 1,220 + 10,000 = 11,236 and so on for any number of generations.

In the preceding discussion we have given the theory the advantage of the large proportion of 10 per cent of this very exceptional variety arising in its midst year by year, and we have seen that, even under these favourable conditions, it is unable to increase its numbers much above its starting-point, and that it remains wholly dependent on the continued renewal of the variety for its existence beyond a few years.

It appears, then, that this form of inter-specific sterility cannot be increased by natural or any other known form of selection, but that it contains within itself its own principle of destruction. If it is proposed to get over the difficulty by postulating a larger percentage of the variety annually arising within the species, we shall not affect the law of decrease until we approach equality in the numbers of the two varieties. But with any such increase of the physiological variety the species itself would inevitably suffer by the large proportion of sterile unions in its midst, and would thus be at a great disadvantage in compet.i.tion with other species which were fertile throughout. Thus, natural selection will always tend to weed out any species with too great a tendency to sterility among its own members, and will therefore prevent such sterility from becoming the general characteristic of varying species, which this theory demands should be the case.

On the whole, then, it appears clear that no form of infertility or sterility between the individuals of a species, can be increased by natural selection unless correlated with some useful variation, while all infertility not so correlated has a constant tendency to effect its own elimination. But the opposite property, fertility, is of vital importance to every species, and gives the offspring of the individuals which possess it, in consequence of their superior numbers, a greater chance of survival in the battle of life. It is, therefore, directly under the control of natural selection, which acts both by the self-preservation of fertile and the self-destruction of infertile stocks--except always where correlated as above, when they become useful, and therefore subject to be increased by natural selection.

_Summary and Concluding Remarks on Hybridity._

Darwinism (1889) Part 12

You're reading novel Darwinism (1889) Part 12 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


Darwinism (1889) Part 12 summary

You're reading Darwinism (1889) Part 12. This novel has been translated by Updating. Author: Alfred Russel Wallace already has 704 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com

RECENTLY UPDATED NOVEL