Creative Chemistry Part 9
You’re reading novel Creative Chemistry Part 9 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
[Ill.u.s.tration: isoprene _turns into_ caoutchouc]
I have dropped the 16 H's or hydrogen atoms of the formula for simplicity's sake. They simply hook on wherever they can. You will see that the isoprene consists of a chain of four carbon atoms (represented by the C's) with an extra carbon on the side. In the transformation of this colorless liquid into soft rubber two of the double linkages break and so permit the two chains of 4 C's to unite to form one ring of eight. If you have ever played ring-around-a-rosy you will get the idea.
In Chapter IV I explained that the anilin dyes are built up upon the benzene ring of six carbon atoms. The rubber ring consists of eight at least and probably more. Any substance containing that peculiar carbon chain with two double links C=C-C=C can double up--polymerize, the chemist calls it--into a rubber-like substance. So we may have many kinds of rubber, some of which may prove to be more useful than that which happens to be found in nature.
With the structural formula of Harries as a clue chemists all over the world plunged into the problem with renewed hope. The famous Bayer dye works at Elberfeld took it up and there in August, 1909, Dr. Fritz Hofmann worked out a process for the converting of pure isoprene into rubber by heat. Then in 1910 Harries happened upon the same sodium reaction as Matthews, but when he came to get it patented he found that the Englishman had beaten him to the patent office by a few weeks.
This Anglo-German rivalry came to a dramatic climax in 1912 at the great hall of the College of the City of New York when Dr. Carl Duisberg, of the Elberfeld factory, delivered an address on the latest achievements of the chemical industry before the Eighth--and the last for a long time--International Congress of Applied Chemistry. Duisberg insisted upon talking in German, although more of his auditors would have understood him in English. He laid full emphasis upon German achievements and cast doubt upon the claim of "the Englishman Tilden" to have prepared artificial rubber in the eighties. Perkin, of Manchester, confronted him with his new process for making rubber from potatoes, but Duisberg countered by proudly displaying two automobile tires made of synthetic rubber with which he had made a thousand-mile run.
The intense antagonism between the British and German chemists at this congress was felt by all present, but we did not foresee that in two years from that date they would be engaged in manufacturing poison gas to fire at one another. It was, however, realized that more was at stake than personal reputation and national prestige. Under pressure of the new demand for automobiles the price of rubber jumped from $1.25 to $3 a pound in 1910, and millions had been invested in plantations. If Professor Perkin was right when he told the congress that by his process rubber could be made for less than 25 cents a pound it meant that these plantations would go the way of the indigo plantations when the Germans succeeded in making artificial indigo. If Dr. Duisberg was right when he told the congress that synthetic rubber would "certainly appear on the market in a very short time," it meant that Germany in war or peace would become independent of Brazil in the matter of rubber as she had become independent of Chile in the matter of nitrates.
As it turned out both scientists were too sanguine. Synthetic rubber has not proved capable of displacing natural rubber by underbidding it nor even of replacing natural rubber when this is shut out. When Germany was blockaded and the success of her armies depended on rubber, price was no object. Three Danish sailors who were caught by United States officials trying to smuggle dental rubber into Germany confessed that they had been selling it there for gas masks at $73 a pound. The German gas masks in the latter part of the war were made without rubber and were frail and leaky. They could not have withstood the new gases which American chemists were preparing on an unprecedented scale. Every sc.r.a.p of old rubber in Germany was saved and worked over and over and diluted with fillers and surrogates to the limit of elasticity. Spring tires were subst.i.tuted for pneumatics. So it is evident that the supply of synthetic rubber could not have been adequate or satisfactory. Neither, on the other hand, have the British made a success of the Perkin process, although they spent $200,000 on it in the first two years. But, of course, there was not the same necessity for it as in the case of Germany, for England had practically a monopoly of the world's supply of natural rubber either through owning plantations or controlling s.h.i.+pping. If rubber could not be manufactured profitably in Germany when the demand was imperative and price no consideration it can hardly be expected to compete with the natural under peace conditions.
The problem of synthetic rubber has then been solved scientifically but not industrially. It can be made but cannot be made to pay. The difficulty is to find a cheap enough material to start with. We can make rubber out of potatoes--but potatoes have other uses. It would require more land and more valuable land to raise the potatoes than to raise the rubber. We can get isoprene by the distillation of turpentine--but why not bleed a rubber tree as well as a pine tree? Turpentine is neither cheap nor abundant enough. Any kind of wood, sawdust for instance, can be utilized by converting the cellulose over into sugar and fermenting this to alcohol, but the process is not likely to prove profitable.
Petroleum when cracked up to make gasoline gives isoprene or other double-bond compounds that go over into some form of rubber.
But the most interesting and most promising of all is the complete inorganic synthesis that dispenses with the aid of vegetation and starts with coal and lime. These heated together in the electric furnace form calcium carbide and this, as every automobilist knows, gives acetylene by contact with water. From this gas isoprene can be made and the isoprene converted into rubber by sodium, or acid or alkali or simple heating. Acetone, which is also made from acetylene, can be converted directly into rubber by fuming sulfuric acid. This seems to have been the process chiefly used by the Germans during the war. Several carbide factories were devoted to it. But the intermediate and by-products of the process, such as alcohol, acetic acid and acetone, were in as much demand for war purposes as rubber. The Germans made some rubber from pitch imported from Sweden. They also found a useful subst.i.tute in aluminum naphthenate made from Baku petroleum, for it is elastic and plastic and can be vulcanized.
So although rubber can be made in many different ways it is not profitable to make it in any of them. We have to rely still upon the natural product, but we can greatly improve upon the way nature produces it. When the call came for more rubber for the electrical and automobile industries the first attempt to increase the supply was to put pressure upon the natives to bring in more of the latex. As a consequence the trees were bled to death and sometimes also the natives. The Belgian atrocities in the Congo shocked the civilized world and at Putumayo on the upper Amazon the same cause produced the same horrible effects. But no matter what cruelty was practiced the tropical forests could not be made to yield a sufficient increase, so the cultivation of the rubber was begun by far-sighted men in Dutch Java, Sumatra and Borneo and in British Malaya and Ceylon.
Brazil, feeling secure in the possession of a natural monopoly, made no effort to compete with these parvenus. It cost about as much to gather rubber from the Amazon forests as it did to raise it on a Malay plantation, that is, 25 cents a pound. The Brazilian Government clapped on another 25 cents export duty and spent the money lavishly. In 1911 the treasury of Para took in $2,000,000 from the rubber tax and a good share of the money was spent on a magnificent new theater at Manaos--not on setting out rubber trees. The result of this rivalry between the collector and the cultivator is shown by the fact that in the decade 1907-1917 the world's output of plantation rubber increased from 1000 to 204,000 tons, while the output of wild rubber decreased from 68,000 to 53,000. Besides this the plantation rubber is a cleaner and more even product, carefully coagulated by acetic acid instead of being smoked over a forest fire. It comes in pale yellow sheets instead of big black b.a.l.l.s loaded with the dirt or sticks and stones that the honest Indian sometimes adds to make a bigger lump. What's better, the man who milks the rubber trees on a plantation may live at home where he can be decently looked after. The agriculturist and the chemist may do what the philanthropist and statesman could not accomplish: put an end to the cruelties involved in the international struggle for "black gold."
The United States uses three-fourths of the world's rubber output and grows none of it. What is the use of tropical possessions if we do not make use of them? The Philippines could grow all our rubber and keep a $300,000,000 business under our flag. Santo Domingo, where rubber was first discovered, is now under our supervision and could be enriched by the industry. The Guianas, where the rubber tree was first studied, might be purchased. It is chiefly for lack of a definite colonial policy that our rubber industry, by far the largest in the world, has to be dependent upon foreign sources for all its raw materials. Because the Philippines are likely to be cast off at any moment, American manufacturers are placing their plantations in the Dutch or British possessions. The Goodyear Company has secured a concession of 20,000 acres near Medan in Dutch Sumatra.
While the United States is planning to relinquish its Pacific possessions the British have more than doubled their holdings in New Guinea by the acquisition of Kaiser Wilhelm's Land, good rubber country. The British Malay States in 1917 exported over $118,000,000 worth of plantation-grown rubber and could have sold more if s.h.i.+pping had not been short and production restricted. Fully 90 per cent. of the cultivated rubber is now grown in British colonies or on British plantations in the Dutch East Indies. To protect this monopoly an act has been pa.s.sed preventing foreigners from buying more land in the Malay Peninsula. The j.a.panese have acquired there 50,000 acres, on which they are growing more than a million dollars' worth of rubber a year. The British _Tropical Life_ says of the American invasion: "As America is so extremely wealthy Uncle Sam can well afford to continue to buy our rubber as he has been doing instead of coming in to produce rubber to reduce his compet.i.tion as a buyer in the world's market." The Malaya estates calculate to pay a dividend of 20 per cent. on the investment with rubber selling at 30 cents a pound and every two cents additional on the price brings a further 3-1/2 per cent. dividend. The output is restricted by the Rubber Growers' a.s.sociation so as to keep the price up to 50-70 cents. When the plantations first came into bearing in 1910 rubber was bringing nearly $3 a pound, and since it can be produced at less than 30 cents a pound we can imagine the profits of the early birds.
The fact that the world's rubber trade was in the control of Great Britain caused America great anxiety and financial loss in the early part of the war when the British Government, suspecting--not without reason--that some American rubber goods were getting into Germany through neutral nations, suddenly shut off our supply. This threatened to kill the fourth largest of our industries and it was only by the submission of American rubber dealers to the closest supervision and restriction by the British authorities that they were allowed to continue their business. Sir Francis Hopwood, in laying down these regulations, gave emphatic warning "that in case any manufacturer, importer or dealer came under suspicion his permits should be immediately revoked. Reinstatement will be slow and difficult. The British Government will cancel first and investigate afterward." Of course the British had a right to say under what conditions they should sell their rubber and we cannot blame them for taking such precautions to prevent its getting to their enemies, but it placed the United States in a humiliating position and if we had not been in sympathy with their side it would have aroused more resentment than it did. But it made evident the desirability of having at least part of our supply under our own control and, if possible, within our own country. Rubber is not rare in nature, for it is contained in almost every milky juice. Every country boy knows that he can get a self-feeding mucilage brush by cutting off a milkweed stalk. The only native source so far utilized is the guayule, which grows wild on the deserts of the Mexican and the American border. The plant was discovered in 1852 by Dr. J.M. Bigelow near Escondido Creek, Texas. Professor Asa Gray described it and named it Parthenium argentatum, or the silver Pallas. When chopped up and macerated guayule gives a satisfactory quality of caoutchouc in profitable amounts. In 1911 seven thousand tons of guayule were imported from Mexico; in 1917 only seventeen hundred tons. Why this falling off? Because the eager exploiters had killed the goose that laid the golden egg, or in plain language, pulled up the plant by the roots.
Now guayule is being cultivated and is reaped instead of being uprooted.
Experiments at the Tucson laboratory have recently removed the difficulty of getting the seed to germinate under cultivation. This seems the most promising of the home-grown plants and, until artificial rubber can be made profitable, gives us the only chance of being in part independent of oversea supply.
There are various other gums found in nature that can for some purposes be subst.i.tuted for caoutchouc. Gutta percha, for instance, is pliable and tough though not very elastic. It becomes plastic by heat so it can be molded, but unlike rubber it cannot be hardened by heating with sulfur. A lump of gutta percha was brought from Java in 1766 and placed in a British museum, where it lay for nearly a hundred years before it occurred to anybody to do anything with it except to look at it. But a German electrician, Siemens, discovered in 1847 that gutta percha was valuable for insulating telegraph lines and it found extensive employment in submarine cables as well as for golf b.a.l.l.s, and the like.
Balata, which is found in the forests of the Guianas, is between gutta percha and rubber, not so good for insulation but useful for shoe soles and machine belts. The bark of the tree is so thick that the latex does not run off like caoutchouc when the bark is cut. So the bark has to be cut off and squeezed in hand presses. Formerly this meant cutting down the tree, but now alternate strips of the bark are cut off and squeezed so the tree continues to live.
When Columbus discovered Santo Domingo he found the natives playing with b.a.l.l.s made from the gum of the caoutchouc tree. The soldiers of Pizarro, when they conquered Inca-Land, adopted the Peruvian custom of smearing caoutchouc over their coats to keep out the rain. A French scientist, M.
de la Condamine, who went to South America to measure the earth, came back in 1745 with some specimens of caoutchouc from Para as well as quinine from Peru. The vessel on which he returned, the brig _Minerva_, had a narrow escape from capture by an English cruiser, for Great Britain was jealous of any trespa.s.sing on her American sphere of influence. The Old World need not have waited for the discovery of the New, for the rubber tree grows wild in Annam as well as Brazil, but none of the Asiatics seems to have discovered any of the many uses of the juice that exudes from breaks in the bark.
The first practical use that was made of it gave it the name that has stuck to it in English ever since. Magellan announced in 1772 that it was good to remove pencil marks. A lump of it was sent over from France to Priestley, the clergyman chemist who discovered oxygen and was mobbed out of Manchester for being a republican and took refuge in Pennsylvania. He cut the lump into little cubes and gave them to his friends to eradicate their mistakes in writing or figuring. Then they asked him what the queer things were and he said that they were "India rubbers."
[Ill.u.s.tration: FOREST RUBBER
Compare this tropical tangle and gnarled trunk with the straight tree and cleared ground of the plantation. At the foot of the trunk are cups collecting rubber juice.]
[Ill.u.s.tration: PLANTATION RUBBER
This spiral cut draws off the milk as completely and quickly as possible without harming the tree. The man is pulling off a strip of coagulated rubber that clogs it.]
[Ill.u.s.tration: IN MAKING GARDEN HOSE THE RUBBER IS FORMED INTO A TUBE BY THE MACHINE ON THE RIGHT AND COILED ON THE TABLE TO THE LEFT]
The Peruvian natives had used caoutchouc for water-proof clothing, shoes, bottles and syringes, but Europe was slow to take it up, for the stuff was too sticky and smelled too bad in hot weather to become fas.h.i.+onable in fastidious circles. In 1825 Mackintosh made his name immortal by putting a layer of rubber between two cloths.
A German chemist, Ludersdorf, discovered in 1832 that the gum could be hardened by treating it with sulfur dissolved in turpentine. But it was left to a Yankee inventor, Charles Goodyear, of Connecticut, to work out a practical solution of the problem. A friend of his, Hayward, told him that it had been revealed to him in a dream that sulfur would harden rubber, but unfortunately the angel or defunct chemist who inspired the vision failed to reveal the details of the process. So Hayward sold out his dream to Goodyear, who spent all his own money and all he could borrow from his friends trying to convert it into a reality. He worked for ten years on the problem before the "lucky accident" came to him.
One day in 1839 he happened to drop on the hot stove of the kitchen that he used as a laboratory a mixture of caoutchouc and sulfur. To his surprise he saw the two substances fuse together into something new.
Instead of the soft, tacky gum and the yellow, brittle brimstone he had the tough, stable, elastic solid that has done so much since to make our footing and wheeling safe, swift and noiseless. The gumshoes or galoshes that he was then enabled to make still go by the name of "rubbers" in this country, although we do not use them for pencil erasers.
Goodyear found that he could vary this "vulcanized rubber" at will. By adding a little more sulfur he got a hard substance which, however, could be softened by heat so as to be molded into any form wanted. Out of this "hard rubber" "vulcanite" or "ebonite" were made combs, hairpins, penholders and the like, and it has not yet been superseded for some purposes by any of its recent rivals, the synthetic resins.
The new form of rubber made by the Germans, methyl rubber, is said to be a superior subst.i.tute for the hard variety but not satisfactory for the soft. The electrical resistance of the synthetic product is 20 per cent, higher than the natural, so it is excellent for insulation, but it is inferior in elasticity. In the latter part of the war the methyl rubber was manufactured at the rate of 165 tons a month.
The first pneumatic tires, known then as "patent aerial wheels," were invented by Robert William Thomson of London in 1846. On the following year a carriage equipped with them was seen in the streets of New York City. But the pneumatic tire did not come into use until after 1888, when an Irish horse-doctor, John Boyd Dunlop, of Belfast, tied a rubber tube around the wheels of his little son's velocipede. Within seven years after that a $25,000,000 corporation was manufacturing Dunlop tires. Later America took the lead in this business. In 1913 the United States exported $3,000,000 worth of tires and tubes. In 1917 the American exports rose to $13,000,000, not counting what went to the Allies. The number of pneumatic tires sold in 1917 is estimated at 18,000,000, which at an average cost of $25 would amount to $450,000,000.
No matter how much synthetic rubber may be manufactured or how many rubber trees are set out there is no danger of glutting the market, for as the price falls the uses of rubber become more numerous. One can think of a thousand ways in which rubber could be used if it were only cheap enough. In the form of pads and springs and tires it would do much to render traffic noiseless. Even the elevated railroad and the subway might be opened to conversation, and the city made habitable for mild voiced and gentle folk. It would make one's step sure, noiseless and springy, whether it was used individualistically as rubber heels or collectivistically as carpeting and paving. In roofing and siding and paint it would make our buildings warmer and more durable. It would reduce the cost and permit the extension of electrical appliances of almost all kinds. In short, there is hardly any other material whose abundance would contribute more to our comfort and convenience. Noise is an automatic alarm indicating lost motion and wasted energy. Silence is economy and resiliency is superior to resistance. A gumshoe outlasts a hobnailed sole and a rubber tube full of air is better than a steel tire.
IX
THE RIVAL SUGARS
The ancient Greeks, being an inquisitive and acquisitive people, were fond of collecting tales of strange lands. They did not care much whether the stories were true or not so long as they were interesting.
Among the marvels that the Greeks heard from the Far East two of the strangest were that in India there were plants that bore wool without sheep and reeds that bore honey without bees. These incredible tales turned out to be true and in the course of time Europe began to get a little calico from Calicut and a kind of edible gravel that the Arabs who brought it called "sukkar." But of course only kings and queens could afford to dress in calico and have sugar prescribed for them when they were sick.
Fortunately, however, in the course of time the Arabs invaded Spain and forced upon the unwilling inhabitants of Europe such instrumentalities of higher civilization as arithmetic and algebra, soap and sugar. Later the Spaniards by an act of equally unwarranted and beneficent aggression carried the sugar cane to the Caribbean, where it thrived amazingly. The West Indies then became a rival of the East Indies as a treasure-house of tropical wealth and for several centuries the Spanish, Portuguese, Dutch, English, Danes and French fought like wildcats to gain possession of this little nest of islands and the routes leading thereunto.
The English finally overcame all these enemies, whether they fought her singly or combined. Great Britain became mistress of the seas and took such Caribbean lands as she wanted. But in the end her continental foes came out ahead, for they rendered her victory valueless. They were defeated in geography but they won in chemistry. Canning boasted that "the New World had been called into existence to redress the balance of the Old." Napoleon might have boasted that he had called in the sugar beet to balance the sugar cane. France was then, as Germany was a century later, threatening to dominate the world. England, then as in the Great War, shut off from the seas the s.h.i.+pping of the aggressive power. France then, like Germany later, felt most keenly the lack of tropical products, chief among which, then but not in the recent crisis, was sugar. The cause of this vital change is that in 1747 Marggraf, a Berlin chemist, discovered that it was possible to extract sugar from beets. There was only a little sugar in the beet root then, some six per cent., and what he got out was dirty and bitter. One of his pupils in 1801 set up a beet sugar factory near Breslau under the patronage of the King of Prussia, but the industry was not a success until Napoleon took it up and in 1810 offered a prize of a million francs for a practical process. How the French did make fun of him for this crazy notion! In a comic paper of that day you will find a cartoon of Napoleon in the nursery beside the cradle of his son and heir, the King of Rome--known to the readers of Rostand as l'Aiglon. The Emperor is squeezing the juice of a beet into his coffee and the nurse has put a beet into the mouth of the infant King, saying: "Suck, dear, suck. Your father says it's sugar."
In like manner did the wits ridicule Franklin for fooling with electricity, Rumford for trying to improve chimneys, Parmentier for thinking potatoes were fit to eat, and Jefferson for believing that something might be made of the country west of the Mississippi. In all ages ridicule has been the chief weapon of conservatism. If you want to know what line human progress will take in the future read the funny papers of today and see what they are fighting. The satire of every century from Aristophanes to the latest vaudeville has been directed against those who are trying to make the world wiser or better, against the teacher and the preacher, the scientist and the reformer.
In spite of the ridicule showered upon it the despised beet year by year gained in sweetness of heart. The percentage of sugar rose from six to eighteen and by improved methods of extraction became finally as pure and palatable as the sugar of the cane. An acre of German beets produces more sugar than an acre of Louisiana cane. Continental Europe waxed wealthy while the British West Indies sank into decay. As the beets of Europe became sweeter the population of the islands became blacker.
Before the war England was paying out $125,000,000 for sugar, and more than two-thirds of this money was going to Germany and Austria-Hungary.
Fostered by scientific study, protected by tariff duties, and stimulated by export bounties, the beet sugar industry became one of the financial forces of the world. The English at home, especially the marmalade-makers, at first rejoiced at the idea of getting sugar for less than cost at the expense of her continental rivals. But the suffering colonies took another view of the situation. In 1888 a conference of the powers called at London agreed to stop competing by the pernicious practice of export bounties, but France and the United States refused to enter, so the agreement fell through. Another conference ten years later likewise failed, but when the parvenu beet sugar ventured to invade the historic home of the cane the limit of toleration had been reached. The Council of India put on countervailing duties to protect their homegrown cane from the bounty-fed beet. This forced the calling of a convention at Brussels in 1903 "to equalize the conditions of compet.i.tion between beet sugar and cane sugar of the various countries," at which the powers agreed to a mutual suppression of bounties. Beet sugar then divided the world's market equally with cane sugar and the two rivals stayed substantially neck and neck until the Great War came. This shut out from England the product of Germany, Austria-Hungary, Belgium, northern France and Russia and took the farmers from their fields. The battle lines of the Central Powers enclosed the land which used to grow a third of the world's supply of sugar. In 1913 the beet and the cane each supplied about nine million tons of sugar. In 1917 the output of cane sugar was 11,200,000 and of beet sugar 5,300,000 tons. Consequently the Old World had to draw upon the New. Cuba, on which the United States used to depend for half its sugar supply, sent over 700,000 tons of raw sugar to England in 1916.
The United States sent as much more refined sugar. The lack of s.h.i.+pping interfered with our getting sugar from our tropical dependencies, Hawaii, Porto Rico and the Philippines. The homegrown beets give us only a fifth and the cane of Louisiana and Texas only a fifteenth of the sugar we need. As a result we were obliged to file a claim in advance to get a pound of sugar from the corner grocery and then we were apt to be put off with rock candy, muscovado or honey. Lemon drops proved useful for Russian tea and the "long sweetening" of our forefathers came again into vogue in the form of various syrups. The United States was accustomed to consume almost a fifth of all the sugar produced in the world--and then we could not get it.
[Ill.u.s.tration: MAP SHOWING LOCATION OF EUROPEAN BEET SUGAR FACTORIES--ALSO BATTLE LINES AT CLOSE OF 1918 ESTIMATED THAT ONE-THIRD OF WORLDS PRODUCTION BEFORE THE WAR WAS PRODUCED WITHIN BATTLE LINES Courtesy American Sugar Refining Co.]
The shortage made us realize how dependent we have become upon sugar.
Yet it was, as we have seen, practically unknown to the ancients and only within the present generation has it become an essential factor in our diet. As soon as the chemist made it possible to produce sugar at a reasonable price all nations began to buy it in proportion to their means. Americans, as the wealthiest people in the world, ate the most, ninety pounds a year on the average for every man, woman and child. In other words we ate our weight of sugar every year. The English consumed nearly as much as the Americans; the French and Germans about half as much; the Balkan peoples less than ten pounds per annum; and the African savages none.
[Ill.u.s.tration: How the sugar beet has gained enormously in sugar content under chemical control]
Pure white sugar is the first and greatest contribution of chemistry to the world's dietary. It is unique in being a single definite chemical compound, sucrose, C_{12}H_{22}O_{11}. All natural nutriments are more or less complex mixtures. Many of them, like wheat or milk or fruit, contain in various proportions all of the three factors of foods, the fats, the proteids and the carbohydrates, as well as water and the minerals and other ingredients necessary to life. But sugar is a simple substance, like water or salt, and like them is incapable of sustaining life alone, although unlike them it is nutritious. In fact, except the fats there is no more nutritious food than sugar, pound for pound, for it contains no water and no waste. It is therefore the quickest and usually the cheapest means of supplying bodily energy. But as may be seen from its formula as given above it contains only three elements, carbon, hydrogen and oxygen, and omits nitrogen and other elements necessary to the body. An engine requires not only coal but also lubricating oil, water and bits of steel and bra.s.s to keep it in repair.
But as a source of the energy needed in our strenuous life sugar has no equal and only one rival, alcohol. Alcohol is the offspring of sugar, a degenerate descendant that retains but few of the good qualities of its sire and has acquired some evil traits of its own. Alcohol, like sugar, may serve to furnish the energy of a steam engine or a human body. Used as a fuel alcohol has certain advantages, but used as a food it has the disqualification of deranging the bodily mechanism. Even a little alcohol will impair the accuracy and speed of thought and action, while a large quant.i.ty, as we all know from observation if not experience, will produce temporary incapacitation.
When man feeds on sugar he splits it up by the aid of air into water and carbon dioxide in this fas.h.i.+on:
C_{12}H_{22}O_{11} + 12O_{2} --> 11H_{2}O + 12CO_{2} cane sugar oxygen water carbon dioxide
Creative Chemistry Part 9
You're reading novel Creative Chemistry Part 9 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
Creative Chemistry Part 9 summary
You're reading Creative Chemistry Part 9. This novel has been translated by Updating. Author: Edwin E. Slosson already has 581 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- Creative Chemistry Part 8
- Creative Chemistry Part 10