The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 50
You’re reading novel The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 50 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
This geometry of more than three dimensions is not a simple a.n.a.lytic geometry; it is not purely quant.i.tative, but qualitative also, and it is in this respect above all that it becomes interesting. There is a science called _a.n.a.lysis situs_ and which has for its object the study of the positional relations of the different elements of a figure, apart from their sizes. This geometry is purely qualitative; its theorems would remain true if the figures, instead of being exact, were roughly imitated by a child. We may also make an _a.n.a.lysis situs_ of more than three dimensions. The importance of _a.n.a.lysis situs_ is enormous and can not be too much emphasized; the advantage obtained from it by Riemann, one of its chief creators, would suffice to prove this. We must achieve its complete construction in the higher s.p.a.ces; then we shall have an instrument which will enable us really to see in hypers.p.a.ce and supplement our senses.
The problems of _a.n.a.lysis situs_ would perhaps not have suggested themselves if the a.n.a.lytic language alone had been spoken; or rather, I am mistaken, they would have occurred surely, since their solution is essential to a crowd of questions in a.n.a.lysis, but they would have come singly, one after another, and without our being able to perceive their common bond.
CANTORISM
I have spoken above of our need to go back continually to the first principles of our science, and of the advantage of this for the study of the human mind. This need has inspired two endeavors which have taken a very prominent place in the most recent annals of mathematics. The first is Cantorism, which has rendered our science such conspicuous service.
Cantor introduced into science a new way of considering mathematical infinity. One of the characteristic traits of Cantorism is that in place of going up to the general by building up constructions more and more complicated and defining by construction, it starts from the _genus supremum_ and defines only, as the scholastics would have said, _per genus proximum et differentiam specificam_. Thence comes the horror it has sometimes inspired in certain minds, for instance in Hermite, whose favorite idea was to compare the mathematical to the natural sciences.
With most of us these prejudices have been dissipated, but it has come to pa.s.s that we have encountered certain paradoxes, certain apparent contradictions that would have delighted Zeno, the Eleatic and the school of Megara. And then each must seek the remedy. For my part, I think, and I am not the only one, that the important thing is never to introduce ent.i.ties not completely definable in a finite number of words.
Whatever be the cure adopted, we may promise ourselves the joy of the doctor called in to follow a beautiful pathologic case.
THE INVESTIGATION OF THE POSTULATES
On the other hand, efforts have been made to enumerate the axioms and postulates, more or less hidden, which serve as foundation to the different theories of mathematics. Professor Hilbert has obtained the most brilliant results. It seems at first that this domain would be very restricted and there would be nothing more to do when the inventory should be ended, which could not take long. But when we shall have enumerated all, there will be many ways of cla.s.sifying all; a good librarian always finds something to do, and each new cla.s.sification will be instructive for the philosopher.
Here I end this review which I could not dream of making complete. I think these examples will suffice to show by what mechanism the mathematical sciences have made their progress in the past and in what direction they must advance in the future.
CHAPTER III
MATHEMATICAL CREATION
The genesis of mathematical creation is a problem which should intensely interest the psychologist. It is the activity in which the human mind seems to take least from the outside world, in which it acts or seems to act only of itself and on itself, so that in studying the procedure of geometric thought we may hope to reach what is most essential in man's mind.
This has long been appreciated, and some time back the journal called _L'enseignement mathematique_, edited by Laisant and Fehr, began an investigation of the mental habits and methods of work of different mathematicians. I had finished the main outlines of this article when the results of that inquiry were published, so I have hardly been able to utilize them and shall confine myself to saying that the majority of witnesses confirm my conclusions; I do not say all, for when the appeal is to universal suffrage unanimity is not to be hoped.
A first fact should surprise us, or rather would surprise us if we were not so used to it. How does it happen there are people who do not understand mathematics? If mathematics invokes only the rules of logic, such as are accepted by all normal minds; if its evidence is based on principles common to all men, and that none could deny without being mad, how does it come about that so many persons are here refractory?
That not every one can invent is nowise mysterious. That not every one can retain a demonstration once learned may also pa.s.s. But that not every one can understand mathematical reasoning when explained appears very surprising when we think of it. And yet those who can follow this reasoning only with difficulty are in the majority: that is undeniable, and will surely not be gainsaid by the experience of secondary-school teachers.
And further: how is error possible in mathematics? A sane mind should not be guilty of a logical fallacy, and yet there are very fine minds who do not trip in brief reasoning such as occurs in the ordinary doings of life, and who are incapable of following or repeating without error the mathematical demonstrations which are longer, but which after all are only an acc.u.mulation of brief reasonings wholly a.n.a.logous to those they make so easily. Need we add that mathematicians themselves are not infallible?
The answer seems to me evident. Imagine a long series of syllogisms, and that the conclusions of the first serve as premises of the following: we shall be able to catch each of these syllogisms, and it is not in pa.s.sing from premises to conclusion that we are in danger of deceiving ourselves. But between the moment in which we first meet a proposition as conclusion of one syllogism, and that in which we reencounter it as premise of another syllogism occasionally some time will elapse, several links of the chain will have unrolled; so it may happen that we have forgotten it, or worse, that we have forgotten its meaning. So it may happen that we replace it by a slightly different proposition, or that, while retaining the same enunciation, we attribute to it a slightly different meaning, and thus it is that we are exposed to error.
Often the mathematician uses a rule. Naturally he begins by demonstrating this rule; and at the time when this proof is fresh in his memory he understands perfectly its meaning and its bearing, and he is in no danger of changing it. But subsequently he trusts his memory and afterward only applies it in a mechanical way; and then if his memory fails him, he may apply it all wrong. Thus it is, to take a simple example, that we sometimes make slips in calculation because we have forgotten our multiplication table.
According to this, the special apt.i.tude for mathematics would be due only to a very sure memory or to a prodigious force of attention. It would be a power like that of the whist-player who remembers the cards played; or, to go up a step, like that of the chess-player who can visualize a great number of combinations and hold them in his memory.
Every good mathematician ought to be a good chess-player, and inversely; likewise he should be a good computer. Of course that sometimes happens; thus Gauss was at the same time a geometer of genius and a very precocious and accurate computer.
But there are exceptions; or rather I err; I can not call them exceptions without the exceptions being more than the rule. Gauss it is, on the contrary, who was an exception. As for myself, I must confess, I am absolutely incapable even of adding without mistakes. In the same way I should be but a poor chess-player; I would perceive that by a certain play I should expose myself to a certain danger; I would pa.s.s in review several other plays, rejecting them for other reasons, and then finally I should make the move first examined, having meantime forgotten the danger I had foreseen.
In a word, my memory is not bad, but it would be insufficient to make me a good chess-player. Why then does it not fail me in a difficult piece of mathematical reasoning where most chess-players would lose themselves? Evidently because it is guided by the general march of the reasoning. A mathematical demonstration is not a simple juxtaposition of syllogisms, it is syllogisms _placed in a certain order_, and the order in which these elements are placed is much more important than the elements themselves. If I have the feeling, the intuition, so to speak, of this order, so as to perceive at a glance the reasoning as a whole, I need no longer fear lest I forget one of the elements, for each of them will take its allotted place in the array, and that without any effort of memory on my part.
It seems to me then, in repeating a reasoning learned, that I could have invented it. This is often only an illusion; but even then, even if I am not so gifted as to create it by myself, I myself re-invent it in so far as I repeat it.
We know that this feeling, this intuition of mathematical order, that makes us divine hidden harmonies and relations, can not be possessed by every one. Some will not have either this delicate feeling so difficult to define, or a strength of memory and attention beyond the ordinary, and then they will be absolutely incapable of understanding higher mathematics. Such are the majority. Others will have this feeling only in a slight degree, but they will be gifted with an uncommon memory and a great power of attention. They will learn by heart the details one after another; they can understand mathematics and sometimes make applications, but they cannot create. Others, finally, will possess in a less or greater degree the special intuition referred to, and then not only can they understand mathematics even if their memory is nothing extraordinary, but they may become creators and try to invent with more or less success according as this intuition is more or less developed in them.
In fact, what is mathematical creation? It does not consist in making new combinations with mathematical ent.i.ties already known. Any one could do that, but the combinations so made would be infinite in number and most of them absolutely without interest. To create consists precisely in not making useless combinations and in making those which are useful and which are only a small minority. Invention is discernment, choice.
How to make this choice I have before explained; the mathematical facts worthy of being studied are those which, by their a.n.a.logy with other facts, are capable of leading us to the knowledge of a mathematical law just as experimental facts lead us to the knowledge of a physical law.
They are those which reveal to us unsuspected kins.h.i.+p between other facts, long known, but wrongly believed to be strangers to one another.
Among chosen combinations the most fertile will often be those formed of elements drawn from domains which are far apart. Not that I mean as sufficing for invention the bringing together of objects as disparate as possible; most combinations so formed would be entirely sterile. But certain among them, very rare, are the most fruitful of all.
To invent, I have said, is to choose; but the word is perhaps not wholly exact. It makes one think of a purchaser before whom are displayed a large number of samples, and who examines them, one after the other, to make a choice. Here the samples would be so numerous that a whole lifetime would not suffice to examine them. This is not the actual state of things. The sterile combinations do not even present themselves to the mind of the inventor. Never in the field of his consciousness do combinations appear that are not really useful, except some that he rejects but which have to some extent the characteristics of useful combinations. All goes on as if the inventor were an examiner for the second degree who would only have to question the candidates who had pa.s.sed a previous examination.
But what I have hitherto said is what may be observed or inferred in reading the writings of the geometers, reading reflectively.
It is time to penetrate deeper and to see what goes on in the very soul of the mathematician. For this, I believe, I can do best by recalling memories of my own. But I shall limit myself to telling how I wrote my first memoir on Fuchsian functions. I beg the reader's pardon; I am about to use some technical expressions, but they need not frighten him, for he is not obliged to understand them. I shall say, for example, that I have found the demonstration of such a theorem under such circ.u.mstances. This theorem will have a barbarous name, unfamiliar to many, but that is unimportant; what is of interest for the psychologist is not the theorem but the circ.u.mstances.
For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions. I was then very ignorant; every day I seated myself at my work table, stayed an hour or two, tried a great number of combinations and reached no results. One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds; I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a cla.s.s of Fuchsian functions, those which come from the hypergeometric series; I had only to write out the results, which took but a few hours.
Then I wanted to represent these functions by the quotient of two series; this idea was perfectly conscious and deliberate, the a.n.a.logy with elliptic functions guided me. I asked myself what properties these series must have if they existed, and I succeeded without difficulty in forming the series I have called theta-Fuchsian.
Just at this time I left Caen, where I was then living, to go on a geologic excursion under the auspices of the school of mines. The changes of travel made me forget my mathematical work. Having reached Coutances, we entered an omnibus to go some place or other. At the moment when I put my foot on the step the idea came to me, without anything in my former thoughts seeming to have paved the way for it, that the transformations I had used to define the Fuchsian functions were identical with those of non-Euclidean geometry. I did not verify the idea; I should not have had time, as, upon taking my seat in the omnibus, I went on with a conversation already commenced, but I felt a perfect certainty. On my return to Caen, for conscience' sake I verified the result at my leisure.
Then I turned my attention to the study of some arithmetical questions apparently without much success and without a suspicion of any connection with my preceding researches. Disgusted with my failure, I went to spend a few days at the seaside, and thought of something else.
One morning, walking on the bluff, the idea came to me, with just the same characteristics of brevity, suddenness and immediate certainty, that the arithmetic transformations of indeterminate ternary quadratic forms were identical with those of non-Euclidean geometry.
Returned to Caen, I meditated on this result and deduced the consequences. The example of quadratic forms showed me that there were Fuchsian groups other than those corresponding to the hypergeometric series; I saw that I could apply to them the theory of theta-Fuchsian series and that consequently there existed Fuchsian functions other than those from the hypergeometric series, the ones I then knew. Naturally I set myself to form all these functions. I made a systematic attack upon them and carried all the outworks, one after another. There was one however that still held out, whose fall would involve that of the whole place. But all my efforts only served at first the better to show me the difficulty, which indeed was something. All this work was perfectly conscious.
Thereupon I left for Mont-Valerien, where I was to go through my military service; so I was very differently occupied. One day, going along the street, the solution of the difficulty which had stopped me suddenly appeared to me. I did not try to go deep into it immediately, and only after my service did I again take up the question. I had all the elements and had only to arrange them and put them together. So I wrote out my final memoir at a single stroke and without difficulty.
I shall limit myself to this single example; it is useless to multiply them. In regard to my other researches I would have to say a.n.a.logous things, and the observations of other mathematicians given in _L'enseignement mathematique_ would only confirm them.
Most striking at first is this appearance of sudden illumination, a manifest sign of long, unconscious prior work. The role of this unconscious work in mathematical invention appears to me incontestable, and traces of it would be found in other cases where it is less evident.
Often when one works at a hard question, nothing good is accomplished at the first attack. Then one takes a rest, longer or shorter, and sits down anew to the work. During the first half-hour, as before, nothing is found, and then all of a sudden the decisive idea presents itself to the mind. It might be said that the conscious work has been more fruitful because it has been interrupted and the rest has given back to the mind its force and freshness. But it is more probable that this rest has been filled out with unconscious work and that the result of this work has afterward revealed itself to the geometer just as in the cases I have cited; only the revelation, instead of coming during a walk or a journey, has happened during a period of conscious work, but independently of this work which plays at most a role of excitant, as if it were the goad stimulating the results already reached during rest, but remaining unconscious, to a.s.sume the conscious form.
There is another remark to be made about the conditions of this unconscious work: it is possible, and of a certainty it is only fruitful, if it is on the one hand preceded and on the other hand followed by a period of conscious work. These sudden inspirations (and the examples already cited sufficiently prove this) never happen except after some days of voluntary effort which has appeared absolutely fruitless and whence nothing good seems to have come, where the way taken seems totally astray. These efforts then have not been as sterile as one thinks; they have set agoing the unconscious machine and without them it would not have moved and would have produced nothing.
The need for the second period of conscious work, after the inspiration, is still easier to understand. It is necessary to put in shape the results of this inspiration, to deduce from them the immediate consequences, to arrange them, to word the demonstrations, but above all is verification necessary. I have spoken of the feeling of absolute cert.i.tude accompanying the inspiration; in the cases cited this feeling was no deceiver, nor is it usually. But do not think this a rule without exception; often this feeling deceives us without being any the less vivid, and we only find it out when we seek to put on foot the demonstration. I have especially noticed this fact in regard to ideas coming to me in the morning or evening in bed while in a semi-hypnagogic state.
Such are the realities; now for the thoughts they force upon us. The unconscious, or, as we say, the subliminal self plays an important role in mathematical creation; this follows from what we have said. But usually the subliminal self is considered as purely automatic. Now we have seen that mathematical work is not simply mechanical, that it could not be done by a machine, however perfect. It is not merely a question of applying rules, of making the most combinations possible according to certain fixed laws. The combinations so obtained would be exceedingly numerous, useless and c.u.mbersome. The true work of the inventor consists in choosing among these combinations so as to eliminate the useless ones or rather to avoid the trouble of making them, and the rules which must guide this choice are extremely fine and delicate. It is almost impossible to state them precisely; they are felt rather than formulated. Under these conditions, how imagine a sieve capable of applying them mechanically?
A first hypothesis now presents itself: the subliminal self is in no way inferior to the conscious self; it is not purely automatic; it is capable of discernment; it has tact, delicacy; it knows how to choose, to divine. What do I say? It knows better how to divine than the conscious self, since it succeeds where that has failed. In a word, is not the subliminal self superior to the conscious self? You recognize the full importance of this question. Boutroux in a recent lecture has shown how it came up on a very different occasion, and what consequences would follow an affirmative answer. (See also, by the same author, _Science et Religion_, pp. 313 ff.)
Is this affirmative answer forced upon us by the facts I have just given? I confess that, for my part, I should hate to accept it.
Reexamine the facts then and see if they are not compatible with another explanation.
It is certain that the combinations which present themselves to the mind in a sort of sudden illumination, after an unconscious working somewhat prolonged, are generally useful and fertile combinations, which seem the result of a first impression. Does it follow that the subliminal self, having divined by a delicate intuition that these combinations would be useful, has formed only these, or has it rather formed many others which were lacking in interest and have remained unconscious?
In this second way of looking at it, all the combinations would be formed in consequence of the automatism of the subliminal self, but only the interesting ones would break into the domain of consciousness. And this is still very mysterious. What is the cause that, among the thousand products of our unconscious activity, some are called to pa.s.s the threshold, while others remain below? Is it a simple chance which confers this privilege? Evidently not; among all the stimuli of our senses, for example, only the most intense fix our attention, unless it has been drawn to them by other causes. More generally the privileged unconscious phenomena, those susceptible of becoming conscious, are those which, directly or indirectly, affect most profoundly our emotional sensibility.
It may be surprising to see emotional sensibility invoked _a propos_ of mathematical demonstrations which, it would seem, can interest only the intellect. This would be to forget the feeling of mathematical beauty, of the harmony of numbers and forms, of geometric elegance. This is a true esthetic feeling that all real mathematicians know, and surely it belongs to emotional sensibility.
The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 50
You're reading novel The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 50 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 50 summary
You're reading The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 50. This novel has been translated by Updating. Author: Henri Poincare already has 577 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 49
- The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 51