A History of Aeronautics Part 14
You’re reading novel A History of Aeronautics Part 14 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
The year 1912 and 1913 saw the subsequently all-conquering tractor biplane begin to come into its own. This type, which probably originated in England, and at any rate attained to its greatest excellence prior to the War from the drawing offices of the Avro Bristol and Sopwith firms, dealt a blow at the monoplane from which the latter never recovered.
The two-seater tractor biplane produced by Sopwith and piloted by H. G.
Hawker, showed that it was possible to produce a biplane with at least equal speed to the best monoplanes, whilst having the advantage of greater strength and lower landing speeds. The Sopwith machine had a top speed of over 80 miles an hour while landing as slowly as little more than 30 miles an hour; and also proved that it was possible to carry 3 pa.s.sengers with fuel for 4 hours' flight with a motive power of only 80 horse-power. This increase in efficiency was due to careful attention to detail in every part, improved wing sections, clean fuselage-lines, and simplified undercarriages. At the same time, in the early part of 1913 a tendency manifested itself towards the four-wheeled undercarriage, a pair of smaller wheels being added in front of the main wheels to prevent overturning while running on the ground; and several designs of oleo-pneumatic and steel-spring undercarriages were produced in place of the rubber shock-absorber type which had up till then been almost universal.
These two statements as to undercarriage designs may appear to be contradictory, but in reality they do not conflict as they both showed a greater attention to the importance of good springing, combined with a desire to avoid complication and a ma.s.s of struts and wires which increased head resistance.
The Olympia Aero Show of March, 1913, also produced a machine which, although the type was not destined to prove the best for the purpose for which it was designed, was of interest as being the first to be designed specially for war purposes. This was the Vickers 'Gun-bus,' a 'pusher'
machine, with the propeller revolving behind the main planes between the outriggers carrying the tail, with a seat right in front for a gunner who was provided with a machine gun on a swivelling mount which had a free field of fire in every direction forward. The device which proved the death-blow for this type of aircraft during the war will be dealt with in the appropriate place later, but the machine should not go unrecorded.
As a result of a number of accidents to monoplanes the Government appointed a Committee at the end of 1912 to inquire into the causes of these. The report which was presented in March, 1913, exonerated the monoplane by coming to the conclusion that the accidents were not caused by conditions peculiar to monoplanes, but pointed out certain desiderata in aeroplane design generally which are worth recording. They recommended that the wings of aeroplanes should be so internally braced as to have sufficient strength in themselves not to collapse if the external bracing wires should give way. The practice, more common in monoplanes than biplanes, of carrying important bracing wires from the wings to the undercarriage was condemned owing to the liability of damage from frequent landings. They also pointed out the desirability of duplicating all main wires and their attachments, and of using stranded cable for control wires. Owing to the suspicion that one accident at least had been caused through the tearing of the fabric away from the wing, it was recommended that fabric should be more securely fastened to the ribs of the wings, and that devices for preventing the spreading of tears should be considered. In the last connection it is interesting to note that the French Deperdussin firm produced a fabric wing-covering with extra strong threads run at right-angles through the fabric at intervals in order to limit the tearing to a defined area.
In spite, however, of the whitewas.h.i.+ng of the monoplane by the Government Committee just mentioned, considerable stir was occasioned later in the year by the decision of the War office not to order any more monoplanes; and from this time forward until the War period the British Army was provided exclusively with biplanes. Even prior to this the popularity of the monoplane had begun to wane. At the Olympia Aero Show in March, 1913, biplanes for the first time outnumbered the 'single-deckers'(as the Germans call monoplanes); which had the effect of reducing the wing-loading. In the case of the biplanes exhibited this averaged about 4 1/2 lbs. per square foot, while in the case of the monoplanes in the same exhibition the lowest was 5 1/2 lbs., and the highest over 8 1/2 lbs. per square foot of area. It may here be mentioned that it was not until the War period that the importance of loading per horse-power was recognised as the true criterion of aeroplane efficiency, far greater interest being displayed in the amount of weight borne per unit area of wing.
An idea of the state of development arrived at about this time may be gained from the fact that the Commandant of the Military Wing of the Royal Flying Corps in a lecture before the Royal Aeronautical Society read in February, 1913, asked for single-seater scout aeroplanes with a speed of 90 miles an hour and a landing speed of 45 miles an hour--a performance which even two years later would have been considered modest in the extreme. It serves to show that, although higher performances were put up by individual machines on occasion, the general development had not yet reached the stage when such performances could be obtained in machines suitable for military purposes. So far as seaplanes were concerned, up to the beginning of 1913 little attempt had been made to study the novel problems involved, and the bulk of the machines at the Monaco Meeting in April, 1913, for instance, consisted of land machines fitted with floats, in many cases of a most primitive nature, without other alterations. Most of those which succeeded in leaving the water did so through sheer pull of engine power; while practically all were incapable of getting off except in a fair sea, which enabled the pilot to jump the machine into the air across the trough between two waves.
Stability problems had not yet been considered, and in only one or two cases was fin area added at the rear high up, to counterbalance the effect of the floats low down in front. Both twin and single-float machines were used, while the flying boat was only just beginning to come into being from the workshops of Sopwith in Great Britain, Borel-Denhaut in France, and Curtiss in America. In view of the approaching importance of amphibious seaplanes, mention should be made of the flying boat (or 'bat boat' as it was called, following Rudyard Kipling) which was built by Sopwith in 1913 with a wheeled landing-carriage which could be wound up above the bottom surface of the boat so as to be out of the way when alighting on water.
During 1913 the (at one time almost universal) practice originated by the Wright Brothers, of warping the wings for lateral stability, began to die out and the bulk of aeroplanes began to be fitted with flaps (or 'ailerons') instead. This was a distinct change for the better, as continually warping the wings by bending down the extremities of the rear spars was bound in time to produce 'fatigue' in that member and lead to breakage; and the practice became completely obsolete during the next two or three years.
The Gordon-Bennett race of September, 1913, was again won by a Deperdussin machine, somewhat similar to that of the previous year, but with exceedingly small wings, only 107 square feet in area. The shape of these wings was instructive as showing how what, from the general utility point of view, may be disadvantageous can, for a special purpose, be turned to account. With a span of 21 feet, the chord was 5 feet, giving the inefficient 'aspect ratio' of slightly over 4 to 1 only. The object of this was to reduce the lift, and therefore the resistance, to as low a point as possible. The total weight was 1,500 lbs., giving a wing-loading of 14 lbs. per square foot--a hitherto undreamt-of figure. The result was that the machine took an enormously long run before starting; and after touching the ground on landing ran for nearly a mile before stopping; but she beat all records by attaining a speed of 126 miles per hour. Where this performance is mainly interesting is in contrast to the machines of 1920, which with an even higher speed capacity would yet be able to land at not more than 40 or 50 miles per hour, and would be thoroughly efficient flying machines.
The Rheims Aviation Meeting, at which the Gordon-Bennett race was flown, also saw the first appearance of the Morane 'Parasol' monoplane. The Morane monoplane had been for some time an interesting machine as being the only type which had no fixed surface in rear to give automatic stability, the movable elevator being balanced through being hinged about one-third of the way back from the front edge. This made the machine difficult to fly except in the hands of experts, but it was very quick and handy on the controls and therefore useful for racing purposes. In the 'Parasol' the modification was introduced of raising the wing above the body, the pilot looking out beneath it, in order to give as good a view as possible.
Before pa.s.sing to the year 1914 mention should be made of the feat performed by Nesteroff, a Russian, and Pegoud, a French pilot, who were the first to demonstrate the possibilities of flying upside-down and looping the loop. Though perhaps not coming strictly within the purview of a chapter on design (though certain alterations were made to the top wing-bracing of the machine for this purpose) this performance was of extreme importance to the development of aviation by showing the possibility of recovering, given reasonable height, from any position in the air; which led designers to consider the extra stresses to which an aeroplane might be subjected and to take steps to provide for them by increasing strength where necessary.
When the year 1914 opened a speed of 126 miles per hour had been attained and a height of 19,600 feet had been reached. The Sopwith and Avro (the forerunner of the famous training machine of the War period) were probably the two leading tractor biplanes of the world, both two-seaters with a speed variation from 40 miles per hour up to some 90 miles per hour with 80 horse-power engines. The French were still pinning their faith mainly to monoplanes, while the Germans were beginning to come into prominence with both monoplanes and biplanes of the 'Taube' type. These had wings swept backward and also upturned at the wing-tips which, though it gave a certain measure of automatic stability, rendered the machine somewhat clumsy in the air, and their performances were not on the whole as high as those of either France or Great Britain.
Early in 1914 it became known that the experimental work of Edward Busk--who was so lamentably killed during an experimental flight later in the year--following upon the researches of Bairstow and others had resulted in the production at the Royal Aircraft Factory at Farnborough of a truly automatically stable aeroplane. This was the 'R.E.'
(Reconnaissance Experimental), a development of the B.E. which has already been referred to. The remarkable feature of this design was that there was no particular device to which one could point out as the cause of the stability. The stable result was attained simply by detailed design of each part of the aeroplane, with due regard to its relation to, and effect on, other parts in the air. Weights and areas were so nicely arranged that under practically any conditions the machine tended to right itself. It did not, therefore, claim to be a machine which it was impossible to upset, but one which if left to itself would tend to right itself from whatever direction a gust might come. When the principles were extended to the 'B.E. 2c' type (largely used at the outbreak of the War) the latter machine, if the engine were switched of f at a height of not less than 1,000 feet above the ground, would after a few moments a.s.sume its correct gliding angle and glide down to the ground.
The Paris Aero Salon of December, 1913, had been remarkable chiefly for the large number of machines of which the cha.s.sis and bodywork had been constructed of steel-tubing; for the excess of monoplanes over biplanes; and (in the latter) predominance of 'pusher' machines (with propeller in rear of the main planes) compared with the growing British preference for 'tractors' (with air screw in front). Incidentally, the Maurice Farman, the last relic of the old type box-kite with elevator in front appeared shorn of this prefix, and became known as the 'short-horn' in contradistinction to its front-elevatored predecessor which, owing to its general reliability and easy flying capabilities, had long been affectionately called the 'mechanical cow.' The 1913 Salon also saw some lingering attempts at attaining automatic stability by pendulum and other freak devices.
Apart from the appearance of 'R.E.1,' perhaps the most notable development towards the end of 1913 was the appearance of the Sopwith 'Tabloid 'tractor biplane. This single-seater machine, evolved from the two-seater previously referred to, fitted with a Gnome engine of 80 horse-power, had the, for those days, remarkable speed of 92 miles an hour; while a still more notable feature was that it could remain in level flight at not more than 37 miles per hour. This machine is of particular importance because it was the prototype and forerunner of the successive designs of single-seater scout fighting machines which were used so extensively from 1914 to 1918. It was also probably the first machine to be capable of reaching a height of 1,000 feet within one minute. It was closely followed by the 'Bristol Bullet,' which was exhibited at the Olympia Aero Show of March, 1914. This last pre-war show was mainly remarkable for the good workmans.h.i.+p displayed--rather than for any distinct advance in design. In fact, there was a notable diversity in the types displayed, but in detailed design considerable improvements were to be seen, such as the general adoption of stranded steel cable in place of piano wire for the mail bracing.
IV. THE WAR PERIOD
Up to this point an attempt has been made to give some idea of the progress that was made during the eleven years that had elapsed since the days of the Wrights' first flights. Much advance had been made and aeroplanes had settled down, superficially at any rate, into more or less standardised forms in three main types--tractor monoplanes, tractor biplanes, and pusher biplanes. Through the application of the results of experiments with models in wind tunnels to full-scale machines, considerable improvements had been made in the design of wing sections, which had greatly increased the efficiency of aeroplanes by raising the amount of 'lift' obtained from the wing compared with the 'drag' (or resistance to forward motion) which the same wing would cause. In the same way the shape of bodies, interplane struts, etc., had been improved to be of better stream-line shape, for the further reduction of resistance; while the problems of stability were beginning to be tolerably well understood. Records (for what they are worth) stood at 21,000 feet as far as height was concerned, 126 miles per hour for speed, and 24 hours duration. That there was considerable room for development is, however, evidenced by a statement made by the late B.
C. Hucks (the famous pilot) in the course of an address delivered before the Royal Aeronautical Society in July, 1914. 'I consider,' he said, 'that the present day standard of flying is due far more to the improvement in piloting than to the improvement in machines.... I consider those (early 1914) machines are only slight improvements on the machines of three years ago, and yet they are put through evolutions which, at that time, were not even dreamed of. I can take a good example of the way improvement in piloting has outdistanced improvement in machines--in the case of myself, my 'looping' Bleriot. Most of you know that there is very little difference between that machine and the 50 horse-power Bleriot of three years ago.' This statement was, of course, to some extent an exaggeration and was by no means agreed with by designers, but there was at the same time a germ of truth in it. There is at any rate little doubt that the theory and practice of aeroplane design made far greater strides towards becoming an exact science during the four years of War than it had done during the six or seven years preceding it.
It is impossible in the s.p.a.ce at disposal to treat of this development even with the meagre amount of detail that has been possible while covering the 'settling down' period from 1911 to 1914, and it is proposed, therefore, to indicate the improvements by sketching briefly the more noticeable difference in various respects between the average machine of 1914 and a similar machine of 1918.
In the first place, it was soon found that it was possible to obtain greater efficiency and, in particular, higher speeds, from tractor machines than from pusher machines with the air screw behind the main planes. This was for a variety of reasons connected with the efficiency of propellers and the possibility of reducing resistance to a greater extent in tractor machines by using a 'stream-line' fuselage (or body) to connect the main planes with the tail. Full advantage of this could not be taken, however, owing to the difficulty of fixing a machine-gun in a forward direction owing to the presence of the propeller. This was finally overcome by an ingenious device (known as an 'Interrupter gear') which allowed the gun to fire only when none of the propeller blades was pa.s.sing in front of the muzzle. The monoplane gradually fell into desuetude, mainly owing to the difficulty of making that type adequately strong without it becoming prohibitively heavy, and also because of its high landing speed and general lack of manoeuvrability. The triplane was also little used except in one or two instances, and, practically speaking, every machine was of the biplane tractor type.
A careful consideration of the salient features leading to maximum efficiency in aeroplanes--particularly in regard to speed and climb, which were the two most important military requirements--showed that a vital feature was the reduction in the amount of weight lifted per horse-power employed; which in 1914 averaged from 20 to 25 lbs. This was effected both by gradual increase in the power and size of the engines used and by great improvement in their detailed design (by increasing compression ratio and saving weight whenever possible); with the result that the motive power of single-seater aeroplanes rose from 80 and 100 horse-power in 1914 to an average of 200 to 300 horse-power, while the actual weight of the engine fell from 3 1/2-4 lbs. per horse-power to an average of 2 1/2 lbs. per horse-power. This meant that while a pre-war engine of 100 horse-power would weigh some 400 lbs., the 1918 engine developing three times the power would have less than double the weight.
The result of this improvement was that a scout aeroplane at the time of the Armistice would have 1 horse-power for every 8 lbs. of weight lifted, compared with the 20 or 25 lbs. of its 1914 predecessors. This produced a considerable increase in the rate of climb, a good postwar machine being able to reach 10,000 feet in about 5 minutes and 20,000 feet in under half an hour. The loading per square foot was also considerably increased; this being rendered possible both by improvement in the design of wing sections and by more scientific construction giving increased strength. It will be remembered that in the machine of the very early period each square foot of surface had only to lift a weight of some 1 1/2 to 2 lbs., which by 1914 had been increased to about 4 lbs. By 1918 aeroplanes habitually had a loading of 8 lbs. or more per square foot of area; which resulted in great increase in speed.
Although a speed of 126 miles per hour had been attained by a specially designed racing machine over a short distance in 1914, the average at that period little exceeded, if at all, 100 miles per hour; whereas in 1918 speeds of 130 miles per hour had become a commonplace, and shortly afterwards a speed of over 166 miles an hour was achieved.
In another direction, also, that of size, great developments were made.
Before the War a few machines fitted with more than one engine had been built (the first being a triple Gnome-engined biplane built by Messrs Short Bros. at Eastchurch in 1913), but none of large size had been successfully produced, the total weight probably in no case exceeding about 2 tons. In 1916, however, the twin engine Handley-Page biplane was produced, to be followed by others both in this country and abroad, which represented a very great increase in size and, consequently, load-carrying capacity. By the end of the War period several types were in existence weighing a total of 10 tons when fully loaded, of which some 4 tons or more represented 'useful load' available for crew, fuel, and bombs or pa.s.sengers. This was attained through very careful attention to detailed design, which showed that the material could be employed more efficiently as size increased, and was also due to the fact that a large machine was not liable to be put through the same evolutions as a small machine, and therefore could safely be built with a lower factor of safety. Owing to the fact that a wing section which is adopted for carrying heavy loads usually has also a somewhat low lift to drag ratio, and is not therefore productive of high speed, these machines are not as fast as light scouts; but, nevertheless, they proved themselves capable of achieving speeds of 100 miles an hour or more in some cases; which was faster than the average small machine of 1914.
In one respect the development during the War may perhaps have proved to be somewhat disappointing, as it might have been expected that great improvements would be effected in metal construction, leading almost to the abolition of wooden structures. Although, however, a good deal of experimental work was done which resulted in overcoming at any rate the worst of the difficulties, metal-built machines were little used (except to a certain extent in Germany) chiefly on account of the need for rapid production and the danger of delay resulting from switching over from known and tried methods to experimental types of construction.
The Germans constructed some large machines, such as the giant Siemens-Schukhert machine, entirely of metal except for the wing covering, while the Fokker and Junker firms about the time of the Armistice in 1918 both produced monoplanes with very deep all-metal wings (including the covering) which were entirely unstayed externally, depending for their strength on internal bracing. In Great Britain cable bracing gave place to a great extent to 'stream-line wires,' which are steel rods rolled to a more or less oval section, while tie-rods were also extensively used for the internal bracing of the wings. Great developments in the economical use of material were also made in the direction of using built-up main spars for the wings and interplane struts; spars composed of a series of layers (or 'laminations') of different pieces of wood also being used.
Apart from the metallic construction of aeroplanes an enormous amount of work was done in the testing of different steels and light alloys for use in engines, and by the end of the War period a number of aircraft engines were in use of which the pistons and other parts were of such alloys; the chief difficulty having been not so much in the design as in the successful heat-treatment and casting of the metal.
An important development in connection with the inspection and testing of aircraft parts, particularly in the case of metal, was the experimental application of X-ray photography, which showed up latent defects, both in the material and in manufacture, which would otherwise have pa.s.sed unnoticed. This method was also used to test the penetration of glue into the wood on each side of joints, so giving a measure of the strength; and for the effect of 'doping' the wings, dope being a film (of cellulose acetate dissolved in acetone with other chemicals) applied to the covering of wings and bodies to render the linen taut and weatherproof, besides giving it a smooth surface for the lessening of 'skin friction' when pa.s.sing rapidly through the air.
An important result of this experimental work was that it in many cases enabled designers to produce aeroplane parts from less costly material than had previously been considered necessary, without impairing the strength. It may be mentioned that it was found undesirable to use welded joints on aircraft in any part where the material is subjectto a tensile or bending load, owing to the danger resulting from bad workmans.h.i.+p causing the material to become brittle--an effect which cannot be discovered except by cutting through the weld, which, of course, involves a test to destruction. Written, as it has been, in August, 1920, it is impossible in this chapter to give any conception of how the developments of War will be applied to commercial aeroplanes, as few truly commercial machines have yet been designed, and even those still show distinct traces of the survival of war mentality. When, however, the inevitable recasting of ideas arrives, it will become evident, whatever the apparent modification in the relative importance of different aspects of design, that enormous advances were made under the impetus of War which have left an indelible mark on progress.
We have, during the seventeen years since aeroplanes first took the air, seen them grow from tentative experimental structures of unknown and unknowable performance to highly scientific products, of which not only the performances (in speed, load-carrying capacity, and climb) are known, but of which the precise strength and degree of stability can be forecast with some accuracy on the drawing board. For the rest, with the future lies--apart from some revolutionary change in fundamental design--the steady development of a now well-tried and well-found engineering structure.
PART III. AEROSTATICS
I. BEGINNINGS
Francesco Lana, with his 'aerial s.h.i.+p,' stands as one of the first great exponents of aerostatics; up to the time of the Montgolfier and Charles balloon experiments, aerostatic and aerodynamic research are so inextricably intermingled that it has been thought well to treat of them as one, and thus the work of Lana, Veranzio and his parachute, Guzman's frauds, and the like, have already been sketched. In connection with Guzman, Hildebrandt states in his Airs.h.i.+ps Past and Present, a fairly exhaustive treatise on the subject up to 1906, the year of its publication, that there were two inventors--or charlatans--Lorenzo de Guzman and a monk Bartolemeo Laurenzo, the former of whom constructed an unsuccessful airs.h.i.+p out of a wooden basket covered with paper, while the latter made certain experiments with a machine of which no description remains. A third de Guzman, some twenty-five years later, announced that he had constructed a flying machine, with which he proposed to fly from a tower to prove his success to the public. The lack of record of any fatal accident overtaking him about that time seems to show that the experiment was not carried out.
Galien, a French monk, published a book L'art de naviguer dans l'air in 1757, in which it was conjectured that the air at high levels was lighter than that immediately over the surface of the earth. Galien proposed to bring down the upper layers of air and with them fill a vessel, which by Archimidean principle would rise through the heavier atmosphere. If one went high enough, said Galien, the air would be two thousand times as light as water, and it would be possible to construct an airs.h.i.+p, with this light air as lifting factor, which should be as large as the town of Avignon, and carry four million pa.s.sengers with their baggage. How this high air was to be obtained is matter for conjecture--Galien seems to have thought in a vicious circle, in which the vessel that must rise to obtain the light air must first be filled with it in order to rise.
Cavendish's discovery of hydrogen in 1776 set men thinking, and soon a certain Doctor Black was suggesting that vessels might be filled with hydrogen, in order that they might rise in the air. Black, however, did not get beyond suggestion; it was Leo Cavallo who first made experiments with hydrogen, beginning with filling soap bubbles, and pa.s.sing on to bladders and special paper bags. In these latter the gas escaped, and Cavallo was about to try goldbeaters' skin at the time that the Montgolfiers came into the field with their hot air balloon.
Joseph and Stephen Montgolfier, sons of a wealthy French paper manufacturer, carried out many experiments in physics, and Joseph interested himself in the study of aeronautics some time before the first balloon was constructed by the brothers--he is said to have made a parachute descent from the roof of his house as early as 1771, but of this there is no proof. Galien's idea, together with study of the movement of clouds, gave Joseph some hope of achieving aerostation through Galien's schemes, and the first experiments were made by pa.s.sing steam into a receiver, which, of course, tended to rise--but the rapid condensation of the steam prevented the receiver from more than threatening ascent. The experiments were continued with smoke, which produced only a slightly better effect, and, moreover, the paper bag into which the smoke was induced permitted of escape through its pores; finding this method a failure the brothers desisted until Priestley's work became known to them, and they conceived the use of hydrogen as a lifting factor. Trying this with paper bags, they found that the hydrogen escaped through the pores of the paper.
Their first balloon, made of paper, reverted to the hot-air principle; they lighted a fire of wool and wet straw under the balloon--and as a matter of course the balloon took fire after very little experiment; thereupon they constructed a second, having a capacity of 700 cubic feet, and this rose to a height of over 1,000 feet. Such a success gave them confidence, and they gave their first public exhibition on June 5th, 1783, with a balloon constructed of paper and of a circ.u.mference of 112 feet. A fire was lighted under this balloon, which, after rising to a height of 1,000 feet, descended through the cooling of the air inside a matter of ten minutes. At this the Academie des Sciences invited the brothers to conduct experiments in Paris.
The Montgolfiers were undoubtedly first to send up balloons, but other experimenters were not far behind them, and before they could get to Paris in response to their invitation, Charles, a prominent physicist of those days, had constructed a balloon of silk, which he proofed against escape of gas with rubber--the Roberts had just succeeded in dissolving this substance to permit of making a suitable coating for the silk. With a quarter of a ton of sulphuric acid, and half a ton of iron filings and turnings, sufficient hydrogen was generated in four days to fill Charles's balloon, which went up on August 28th, 1783. Although the day was wet, Paris turned out to the number of over 300,000 in the Champs de Mars, and cannon were fired to announce the ascent of the balloon. This, rising very rapidly, disappeared amid the rain clouds, but, probably bursting through no outlet being provided to compensate for the escape of gas, fell soon in the neighbourhood of Paris. Here peasants, ascribing evil supernatural influence to the fall of such a thing from nowhere, went at it with the implements of their craft--forks, hoes, and the like--and maltreated it severely, finally attaching it to a horse's tail and dragging it about until it was mere rag and sc.r.a.p.
Meanwhile, Joseph Montgolfier, having come to Paris, set about the construction of a balloon out of linen; this was in three diverse sections, the top being a cone 30 feet in depth, the middle a cylinder 42 feet in diameter by 26 feet in depth, and the bottom another cone 20 feet in depth from junction with the cylindrical portion to its point.
The balloon was both lined and covered with paper, decorated in blue and gold. Before ever an ascent could be attempted this ambitious balloon was caught in a heavy rainstorm which reduced its paper covering to pulp and tore the linen at its seams, so that a supervening strong wind tore the whole thing to shreds.
Montgolfier's next balloon was spherical, having a capacity of 52,000 cubic feet. It was made from waterproofed linen, and on September 19th, 1783, it made an ascent for the palace courtyard at Versailles, taking up as pa.s.sengers a c.o.c.k, a sheep, and a duck. A rent at the top of the balloon caused it to descend within eight minutes, and the duck and sheep were found none the worse for being the first living things to leave the earth in a balloon, but the c.o.c.k, evidently suffering, was thought to have been affected by the rarefaction of the atmosphere at the tremendous height reached--for at that time the general opinion was that the atmosphere did not extend more than four or five miles above the earth's surface. It transpired later that the sheep had trampled on the c.o.c.k, causing more solid injury than any that might be inflicted by rarefied air in an eight-minute ascent and descent of a balloon.
For achieving this flight Joseph Montgolfier received from the King of France a pension of of L40, while Stephen was given the order of St Michael, and a patent of n.o.bility was granted to their father. They were made members of the Legion d'Honneur, and a scientific deputation, of which Faujas de Saint-Fond, who had raised the funds with which Charles's hydrogen balloon was constructed, presented to Stephen Montgolfier a gold medal struck in honour of his aerial conquest.
Since Joseph appears to have had quite as much share in the success as Stephen, the presentation of the medal to one brother only was in questionable taste, unless it was intended to balance Joseph's pension.
Once aerostation had been proved possible, many people began the construction of small balloons--the wholehole thing was regarded as a matter of spectacles and a form of amus.e.m.e.nt by the great majority. A certain Baron de Beaumanoir made the first balloon of goldbeaters' skin, this being eighteen inches in diameter, and using hydrogen as a lifting factor. Few people saw any possibilities in aerostation, in spite of the adventures of the duck and sheep and c.o.c.k; voyages to the moon were talked and written, and there was more of levity than seriousness over ballooning as a rule. The cla.s.sic retort of Benjamin Franklin stands as an exception to the general rule: asked what was the use of ballooning--'What's the use of a baby?' he countered, and the spirit of that reply brought both the dirigible and the aeroplane to being, later.
The next noteworthy balloon was one by Stephen Montgolfier, designed to take up pa.s.sengers, and therefore of rather large dimensions, as these things went then. The capacity was 100,000 cubic feet, the depth being 85 feet, and the exterior was very gaily decorated. A short, cylindrical opening was made at the lower extremity, and under this a fire-pan was suspended, above the pa.s.senger car of the balloon. On October 15th, 1783, Pilatre de Rozier made the first balloon ascent--but the balloon was held captive, and only allowed to rise to a height of 80 feet. But, a little later in 1783, Rozier secured the honour of making the first ascent in a free balloon, taking up with him the Marquis d'Arlandes.
It had been originally intended that two criminals, condemned to death, should risk their lives in the perilous venture, with the prospect of a free pardon if they made a safe descent, but d'Arlandes got the royal consent to accompany Rozier, and the criminals lost their chance. Rozier and d'Arlandes made a voyage lasting for twenty-five minutes, and, on landing, the balloon collapsed with such rapidity as almost to suffocate Rozier, who, however, was dragged out to safety by d'Arlandes. This first aerostatic journey took place on November 21st, 1783.
A History of Aeronautics Part 14
You're reading novel A History of Aeronautics Part 14 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
A History of Aeronautics Part 14 summary
You're reading A History of Aeronautics Part 14. This novel has been translated by Updating. Author: Lockwood Marsh and Evelyn Charles Vivian already has 588 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- A History of Aeronautics Part 13
- A History of Aeronautics Part 15