American Woman's Home: Or, Principles of Domestic Science Part 8

You’re reading novel American Woman's Home: Or, Principles of Domestic Science Part 8 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

The brain lies in the skull, and is divided into the large or upper brain, marked 1, and the small or lower brain, marked 2. From the brain runs the spinal marrow through the spine or backbone. From each side of the spine the large nerves run out into innumerable smaller branches to every portion of the body. The drawing shows only some of the larger branches. Those marked 3 run to the neck and organs of the chest; those marked 4 go to the arms; those below the arms, marked 3, go to the trunk; and those marked 5 go to the legs.

The brain and nerves consist of two kinds of nervous matter--the _gray_, which is supposed to be the portion that originates and controls a nervous fluid which imparts power of action; and the _white_, which seems to conduct this fluid to every part of the body.

The brain and nervous system are divided into distinct portions, each having different offices to perform, and each acting independently of the others; as, for example, one portion is employed by the mind in thinking, and in feeling pleasurable or painful mental emotions; another in moving the muscles; while the nerves that run to the nose, ears, eyes, tongue, hands, and surface generally, are employed in seeing, hearing, smelling, tasting, and feeling all physical sensations.

The _back_ portion of the spinal marrow and the nerves that run from it are employed in _sensation_, or the _sense of feeling_. These nerves extend over the whole body, but are largely developed in the network of nerves in the skin. The _front_ portion of the spinal marrow and its branches are employed in moving those muscles in all parts of the body which are controlled by the _will_ or _choice_ of the mind. These are called the _nerves of motion_.

The nerves of sensation and nerves of motion, although they start from different portions of the spine, are united in the same _sheath_ or _cover_, till they terminate in the muscles. Thus, every muscle is moved by nerves of motion; while alongside of this nerve, in the same sheath, is a nerve of sensation. All the nerves of motion and sensation are connected with those portions of the brain used when we think, feel, and choose. By this arrangement the mind _knows_ what is wanted in all parts of the body by means of the nerves of sensation, and then it _acts_ by means of the nerves of motion.

For example, when we feel the cold air on the skin, the nerves of sensation report to the brain, and thus to the mind, that the body is growing cold. The mind thus knows that more clothing is needed, and _wills_ to have the eyes look for it, and the hands and feet move to get it. This is done by the nerves of sight and of motion.

Next are the nerves of _involuntary motion_, which move all those parts of the head, face, and body that are used in breathing, and in other operations connected with it. By these we continue to breathe when asleep, and whether we will to do so or not. There are also some of the nerves of voluntary motion that are mixed with these, which enable the mind to stop respiration, or to regulate it to a certain extent. But the mind has no power to stop it for any great length of time.

There is another large and important system of nerves called the _sympathetic_ or _ganglionic_ system. It consists of small ma.s.ses of gray and white nervous matter, that seem to be small brains with nerves running from them. These are called _ganglia_, and are arranged on each side of the spine, while small nerves from the spinal marrow run into them, thus uniting the sympathetic system with the nerves of the spine.

These ganglia are also distributed around in various parts of the interior of the body, especially in the intestines, and all the different ganglia are connected with each other by nerves, thus making one system. It is the ganglionic system that carries on the circulation of the blood, the action of the capillaries, lymphatics, arteries, and veins, together with the work of secretion, absorption, and most of the internal working of the body, which goes forward without any knowledge or control of the mind.

Every portion of the body has nerves of sensation coming from the spine, and also branches of the sympathetic or ganglionic system. The object of this is to form a sympathetic communication between the several parts of the body, and also to enable the mind to receive, through the brain, some general knowledge of the state of the whole system. It is owing to this that, when one portion of the body is affected, other portions sympathize. For example, if one part of the body is diseased, the stomach may so sympathize as to lose all appet.i.te until the disease is removed.

All the operations of the nervous system are performed by the influence of the nervous fluid, which is generated in the gray portions of the brain and ganglia. Whenever a nerve is cut off from its connection with these nervous centres, its power is gone, and the part to which it ministered becomes lifeless and incapable of motion.

The brain and nerves can be overworked, and can also suffer for want of exercise, just as the muscles do. It is necessary for the perfect health of the brain and nerves that the several portions he exercised sufficiently, and that no part be exhausted by over-action. For example, the nerves of sensation may be very much exercised, and the nerves of motion have but little exercise. In this ease, one will be weakened by excess of work, and the other by the want of it.

It is found by experience that the proper exercise of the nerves of motion tends to reduce any extreme susceptibility of the nerves of sensation. On the contrary, the neglect of such exercise tends to produce an excessive sensibility in the nerves of sensation.

Whenever that part of the brain which is employed in thinking, feeling, and willing, is greatly exercised by hard study, or by excessive care or emotion, the blood tends to the brain to supply it with increased nourishment, just as it flows to the muscles when they are exercised.

Over-exercise of this portion of the brain causes engorgement of the blood-vessels. This is sometimes indicated by pain, or by a sense of fullness in the head; but oftener the result is a debilitating drain on the nervous system, which depends for its supply on the healthful state of the brain.

The brain has, as it were, a fountain of supply for the nervous fluid, which flows to all the nerves, and stimulates them to action. Some brains have a larger, and some a smaller fountain; so that a degree of mental activity that would entirely exhaust one, would make only a small and healthful drain upon another.

The excessive use of certain portions of the brain tends to withdraw the nervous energy from other portions; so that when one part is debilitated by excess, another fails by neglect. For example, a person may so exhaust the brain power in the excessive use of the nerves of motion by hard work, as to leave little for any other faculty. On the other hand, the nerves of feeling and thinking may be so used as to withdraw the nervous fluid from the nerves of motion, and thus debilitate the muscles.

Some animal propensities may be indulged to such excess as to produce a constant tendency of the blood to a certain portion of the brain, and to the organs connected with it, and thus cause a constant and excessive excitement, which finally becomes a disease. Sometimes a paralysis of this portion of the brain results from such an entire exhaustion of the nervous fountain and of the overworked nerves.

Thus, also, the thinking portion of the brain may be so overworked as to drain the nervous fluid from other portions, which become debilitated by the loss. And in this way, also, the overworked portion may be diseased or paralyzed by the excess.

The necessity for the _equal development_ of all portions of the brain by an appropriate exercise of _all_ the faculties of mind and body, and the influence of this upon happiness, is the most important portion of this subject, and will be more directly exhibited in another chapter.

VIII.

DOMESTIC EXERCISE.

In a work which aims to influence women to train the young to honor domestic labor and to seek healthful exercise in home pursuits, there is special reason for explaining the construction of the muscles and their connection with the nerves, these being the chief organs of motion.

The muscles, as seen by the naked eye, consist of very fine fibres or strings, bound up in smooth, silky casings of thin membrane. But each of these visible fibres or strings the microscope shows to be made up of still finer strings, numbering from five to eight hundred in each fibre. And each of these microscopic fibres is a series or chain of elastic cells, which are so minute that one hundred thousand would scarcely cover a capital O on this page.

[Ill.u.s.tration: Fig. 51.]

[Ill.u.s.tration: Fig. 52.]

The peculiar property of the cells which compose the muscles is their elasticity, no other cells of the body having this property. At Fig.

51 is a diagram representing a microscopic muscular fibre, in which the cells are relaxed, as in the natural state of rest. But when the muscle contracts, each of its numberless cells in all its small fibres becomes widened, making each fibre of the muscle shorter and thicker, as at Fig. 52. This explains the cause of the swelling out of muscles when they act.

Every motion in every part of the body has a special muscle to produce it, and many have other muscles to restore the part moved to its natural state. The muscles that move or bend any part are called _flexors_, and those that restore the natural position are called _extensors_.

[Ill.u.s.tration: Fig. 53]

Fig. 53 represents the muscles of the arm after the skin and flesh are removed. They are all in smooth silky cases, laid over each other, and separated both by the smooth membranes that encase them and by layers of fat, so as to move easily without interfering with each other. They are fastened to the bones by strong tendons and cartilages; and around the wrist, in the drawing, is shown a band of cartilage to confine them in place. The muscle marked 8 is the extensor that straightens the fingers after they have been closed by a flexor the other side of the arm. In like manner, each motion of the arm and fingers has one muscle to produce it and another to restore to the natural position.

The muscles are dependent on the brain and nerves for power to move.

It has been shown that the gray matter of the brain and spinal marrow furnishes the stimulating power that moves the muscles, and causes sensations of touch on the skin, and the other sensations of the several senses. The white part of the brain and spinal marrow consists solely of conducting tubes to transmit this influence. Each of the minute fibrils of the muscles has a small conducting nerve connecting it with the brain or spinal marrow, and in this respect each muscular fibril is separate from every other.

When, therefore, the mind wills to move a flexor muscle of the arm, the gray matter sends out the stimulus through the nerves to the cells of each individual fibre of that muscle, and they contract. When this is done, the nerve of sensation reports it to the brain and mind. If the mind desires to return the arm to its former position, then follows the willing, and consequent stimulus sent through the nerves to the corresponding muscle; its cells contract, and the limb is restored.

When the motion is a compound one, involving the action of several muscles at the same time, a mult.i.tude of impressions are sent back and forth to and from the brain through the nerves. But the person acting thus is unconscious of all this delicate and wonderful mechanism. He wills the movement, and instantly the requisite nervous power is sent to the required cells and fibres, and they perform the motions required.

Many of the muscles are moved by the sympathetic system, over which the mind has but little control.

Among the muscles and nerves so intimately connected, run the minute capillaries of the blood, which furnish nourishment to all.

[Ill.u.s.tration: Fig. 54]

Fig. 54 represents an artery a _a_, which brings pure blood to a muscle from the heart. After meandering through the capillaries at _c_, to distribute oxygen and food from the stomach, the blood enters the vein, _b_, loaded with carbonic acid and water taken up in the capillaries, to be carried to the lungs or skin, and thrown out into the air.

The manner in which the exercise of the muscles quickens the circulation of the blood will now be explained. The veins abound in every part of every muscle, and the large veins have _valves_ which prevent the blood from flowing backward. If the wrist is grasped tightly, the veins of the hand are immediately swollen. This is owing to the fact that the blood is prevented from flowing toward the heart by this pressure, and by the vein-valves from returning into the arteries; while the arteries themselves, being placed deeper down, are not so compressed, and continue to send the blood into the hand, and thus it acc.u.mulates.

As soon as this pressure is removed, the blood springs onward from the restraint with accelerated motion. This same process takes place when any of the muscles are exercised. The contraction of any muscle presses some of the veins, so that the blood can not flow the natural way, while the valves in the veins prevent its flowing backward. Meantime the arteries continue to press the blood along until the veins become swollen. Then, as soon as the muscle ceases its contraction, the blood flows faster from the previous acc.u.mulation.

If, then, we use a number of muscles, and use them strongly and quickly, there are so many veins affected in this way as to quicken the whole circulation. The heart receives blood faster, and sends it to the lungs faster. Then the lungs work quicker, to furnish the oxygen required by the greater amount of blood. The blood returns with greater speed to the heart, and the heart sends it out with quicker action through the arteries to the capillaries. In the capillaries, too, the decayed matter is carried off faster, and then the stomach calls for more food to furnish new and pure blood. Thus it is that exercise gives new life and nourishment to every part of the body.

It is the universal law of the human frame that _exercise_ is indispensable to the health of the several parts. Thus, if a blood-vessel be tied up, so as not to be used, it shrinks, and becomes a useless string; if a muscle be condemned to inaction, it shrinks in size and diminishes in power; and thus it is also with the bones.

Inactivity produces softness, debility, and unfitness for the functions they are designed to perform.

Now, the nerves, like all other parts of the body, gain and lose strength according as they are exercised. If they have too much or too little exercise, they lose strength; if they are exercised to a proper degree, they gain strength. When the mind is continuously excited, by business, study, or the imagination, the nerves of emotion and sensation are kept in constant action, while the nerves of motion are unemployed.

If this is continued for a long time, the nerves of sensation lose their strength from over-action, and the nerves of motion lose their power from inactivity. In consequence, there is a morbid excitability of the nervous, and a debility of the muscular system, which make all exertion irksome and wearisome.

The only mode of preserving the health of these systems is to keep up in them an equilibrium of action. For this purpose, occupations must be sought which exercise the muscles and interest the mind; and thus the equal action of both kinds of nerves is secured. This shows why exercise is so much more healthful and invigorating when the mind is interested, than when it is not. As an ill.u.s.tration, let a person go shopping with a friend, and have nothing to do but look on. How soon do the continuous walking and standing weary! But, suppose one, thus wearied, hears of the arrival of a very dear friend: she can instantly walk off a mile or two to meet her, without the least feeling of fatigue. By this is shown the importance of furnis.h.i.+ng, for young persons, exercise in which they will take an interest. Long and formal walks, merely for exercise, though they do some good, in securing fresh air, and some exercise of the muscles, would be of triple benefit if changed to amusing sports, or to the cultivation of fruits and flowers, in which it is impossible to engage without acquiring a great interest.

It shows, also, why it is far better to trust to useful domestic exercise at home than to send a young person out to walk for the mere purpose of exercise. Young girls can seldom be made to realize the value of health, and the need of exercise to secure it, so as to feel much interest in walking abroad, when they have no other object. But, if they are brought up to minister to the comfort and enjoyment of themselves and others, by performing domestic duties, they will constantly be interested and cheered in their exercise by the feeling of usefulness and the consciousness of having performed their duty.

There are few young persons, it is hoped, who are brought up with such miserable habits of selfishness and indolence that they can not be made to feel happier by the consciousness of being usefully employed.

And those who have never been accustomed to think or care for any one but themselves, and who seem to feel little pleasure in making themselves useful, by wise and proper influences can often be gradually awakened to the new pleasure of benevolent exertion to promote the comfort and enjoyment of others. And the more this sacred and elevating kind of enjoyment is tasted, the greater is the relish induced. Other enjoyments often cloy; but the heavenly pleasure secured by virtuous industry and benevolence, while it satisfies at the time, awakens fresh desires for the continuance of so enn.o.bling a good.

IX.

American Woman's Home: Or, Principles of Domestic Science Part 8

You're reading novel American Woman's Home: Or, Principles of Domestic Science Part 8 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


American Woman's Home: Or, Principles of Domestic Science Part 8 summary

You're reading American Woman's Home: Or, Principles of Domestic Science Part 8. This novel has been translated by Updating. Author: Catherine E. Beecher and Harriet Beecher Stowe already has 582 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com