Five of Maxwell's Papers Part 2
You’re reading novel Five of Maxwell's Papers Part 2 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
When we find that here, and in the starry heavens, there are innumerable mult.i.tudes of little bodies of exactly the same ma.s.s, so many, and no more, to the grain, and vibrating in exactly the same time, so many times, and no more, in a second, and when we reflect that no power in nature can now alter in the least either the ma.s.s or the period of any one of them, we seem to have advanced along the path of natural knowledge to one of those points at which we must accept the guidance of that faith by which we understand that "that which is seen was not made of things which do appear."
One of the most remarkable results of the progress of molecular science is the light it has thrown on the nature of irreversible processes--processes, that is, which always tend towards and never away from a certain limiting state. Thus, if two gases be put into the same vessel, they become mixed, and the mixture tends continually to become more uniform. If two unequally heated portions of the same gas are put into the vessel, something of the kind takes place, and the whole tends to become of the same temperature. If two unequally heated solid bodies be placed in contact, a continual approximation of both to an intermediate temperature takes place.
In the case of the two gases, a separation may be effected by chemical means; but in the other two cases the former state of things cannot be restored by any natural process.
In the case of the conduction or diffusion of heat the process is not only irreversible, but it involves the irreversible diminution of that part of the whole stock of thermal energy which is capable of being converted into mechanical work.
This is Thomson's theory of the irreversible dissipation of energy, and it is equivalent to the doctrine of Clausius concerning the growth of what he calls Entropy.
The irreversible character of this process is strikingly embodied in Fourier's theory of the conduction of heat, where the formulae themselves indicate, for all positive values of the time, a possible solution which continually tends to the form of a uniform diffusion of heat.
But if we attempt to ascend the stream of time by giving to its symbol continually diminis.h.i.+ng values, we are led up to a state of things in which the formula has what is called a critical value; and if we inquire into the state of things the instant before, we find that the formula becomes absurd.
We thus arrive at the conception of a state of things which cannot be conceived as the physical result of a previous state of things, and we find that this critical condition actually existed at an epoch not in the utmost depths of a past eternity, but separated from the present time by a finite interval.
This idea of a beginning is one which the physical researches of recent times have brought home to us, more than any observer of the course of scientific thought in former times would have had reason to expect.
But the mind of man is not, like Fourier's heated body, continually settling down into an ultimate state of quiet uniformity, the character of which we can already predict; it is rather like a tree, shooting out branches which adapt themselves to the new aspects of the sky towards which they climb, and roots which contort themselves among the strange strata of the earth into which they delve. To us who breathe only the spirit of our own age, and know only the characteristics of contemporary thought, it is as impossible to predict the general tone of the science of the future as it is to antic.i.p.ate the particular discoveries which it will make.
Physical research is continually revealing to us new features of natural processes, and we are thus compelled to search for new forms of thought appropriate to these features. Hence the importance of a careful study of those relations between mathematics and Physics which determine the conditions under which the ideas derived from one department of physics may be safely used in forming ideas to be employed in a new department.
The figure of speech or of thought by which we transfer the language and ideas of a familiar science to one with which we are less acquainted may be called Scientific Metaphor.
Thus the words Velocity, Momentum, Force, &c. have acquired certain precise meanings in Elementary Dynamics. They are also employed in the Dynamics of a Connected System in a sense which, though perfectly a.n.a.logous to the elementary sense, is wider and more general.
These generalized forms of elementary ideas may be called metaphorical terms in the sense in which every abstract term is metaphorical. The characteristic of a truly scientific system of metaphors is that each term in its metaphorical use retains all the formal relations to the other terms of the system which it had in its original use. The method is then truly scientific--that is, not only a legitimate product of science, but capable of generating science in its turn.
There are certain electrical phenomena, again, which are connected together by relations of the same form as those which connect dynamical phenomena. To apply to these the phrases of dynamics with proper distinctions and provisional reservations is an example of a metaphor of a bolder kind; but it is a legitimate metaphor if it conveys a true idea of the electrical relations to those who have been already trained in dynamics.
Suppose, then, that we have successfully introduced certain ideas belonging to an elementary science by applying them metaphorically to some new cla.s.s of phenomena. It becomes an important philosophical question to determine in what degree the applicability of the old ideas to the new subject may be taken as evidence that the new phenomena are physically similar to the old.
The best instances for the determination of this question are those in which two different explanations have been given of the same thing.
The most celebrated case of this kind is that of the corpuscular and the undulatory theories of light. Up to a certain point the phenomena of light are equally well explained by both; beyond this point, one of them fails.
To understand the true relation of these theories in that part of the field where they seem equally applicable we must look at them in the light which Hamilton has thrown upon them by his discovery that to every brachistochrone problem there corresponds a problem of free motion, involving different velocities and times, but resulting in the same geometrical path. Professor Tait has written a very interesting paper on this subject.
According to a theory of electricity which is making great progress in Germany, two electrical particles act on one another directly at a distance, but with a force which, according to Weber, depends on their relative velocity, and according to a theory hinted at by Gauss, and developed by Riemann, Lorenz, and Neumann, acts not instantaneously, but after a time depending on the distance. The power with which this theory, in the hands of these eminent men, explains every kind of electrical phenomena must be studied in order to be appreciated.
Another theory of electricity, which I prefer, denies action at a distance and attributes electric action to tensions and pressures in an all-pervading medium, these stresses being the same in kind with those familiar to engineers, and the medium being identical with that in which light is supposed to be propagated.
Both these theories are found to explain not only the phenomena by the aid of which they were originally constructed, but other phenomena, which were not thought of or perhaps not known at the time; and both have independently arrived at the same numerical result, which gives the absolute velocity of light in terms of electrical quant.i.ties.
That theories apparently so fundamentally opposed should have so large a field of truth common to both is a fact the philosophical importance of which we cannot fully appreciate till we have reached a scientific alt.i.tude from which the true relation between hypotheses so different can be seen.
I shall only make one more remark on the relation between Mathematics and Physics. In themselves, one is an operation of the mind, the other is a dance of molecules. The molecules have laws of their own, some of which we select as most intelligible to us and most amenable to our calculation. We form a theory from these partial data, and we ascribe any deviation of the actual phenomena from this theory to disturbing causes. At the same time we confess that what we call disturbing causes are simply those parts of the true circ.u.mstances which we do not know or have neglected, and we endeavour in future to take account of them. We thus acknowledge that the so-called disturbance is a mere figment of the mind, not a fact of nature, and that in natural action there is no disturbance.
But this is not the only way in which the harmony of the material with the mental operation may be disturbed. The mind of the mathematician is subject to many disturbing causes, such as fatigue, loss of memory, and hasty conclusions; and it is found that, from these and other causes, mathematicians make mistakes.
I am not prepared to deny that, to some mind of a higher order than ours, each of these errors might be traced to the regular operation of the laws of actual thinking; in fact we ourselves often do detect, not only errors of calculation, but the causes of these errors. This, however, by no means alters our conviction that they are errors, and that one process of thought is right and another process wrong. I
One of the most profound mathematicians and thinkers of our time, the late George Boole, when reflecting on the precise and almost mathematical character of the laws of right thinking as compared with the exceedingly perplexing though perhaps equally determinate laws of actual and fallible thinking, was led to another of those points of view from which Science seems to look out into a region beyond her own domain.
"We must admit," he says, "that there exist laws" (of thought) "which even the rigour of their mathematical forms does not preserve from violation. We must ascribe to them an authority, the essence of which does not consist in power, a supremacy which the a.n.a.logy of the inviolable order of the natural world in no way a.s.sists us to comprehend."
Introductory Lecture on Experimental Physics.
James Clerk Maxwell
The University of Cambridge, in accordance with that law of its evolution, by which, while maintaining the strictest continuity between the successive phases of its history, it adapts itself with more or less promptness to the requirements of the times, has lately inst.i.tuted a course of Experimental Physics. This course of study, while it requires us to maintain in action all those powers of attention and a.n.a.lysis which have been so long cultivated in the University, calls on us to exercise our senses in observation, and our hands in manipulation. The familiar apparatus of pen, ink, and paper will no longer be sufficient for us, and we shall require more room than that afforded by a seat at a desk, and a wider area than that of the black board. We owe it to the munificence of our Chancellor, that, whatever be the character in other respects of the experiments which we hope hereafter to conduct, the material facilities for their full development will be upon a scale which has not hitherto been surpa.s.sed.
The main feature, therefore, of Experimental Physics at Cambridge is the Devons.h.i.+re Physical Laboratory, and I think it desirable that on the present occasion, before we enter on the details of any special study, we should consider by what means we, the University of Cambridge, may, as a living body, appropriate and vitalise this new organ, the outward sh.e.l.l of which we expect soon to rise before us.
The course of study at this University has always included Natural Philosophy, as well as Pure Mathematics. To diffuse a sound knowledge of Physics, and to imbue the minds of our students with correct dynamical principles, have been long regarded as among our highest functions, and very few of us can now place ourselves in the mental condition in which even such philosophers as the great Descartes were involved in the days before Newton had announced the true laws of the motion of bodies. Indeed the cultivation and diffusion of sound dynamical ideas has already effected a great change in the language and thoughts even of those who make no pretensions to science, and we are daily receiving fresh proofs that the popularisation of scientific doctrines is producing as great an alteration in the mental state of society as the material applications of science are effecting in its outward life. Such indeed is the respect paid to science, that the most absurd opinions may become current, provided they are expressed in language, the sound of which recals some well-known scientific phrase. If society is thus prepared to receive all kinds of scientific doctrines, it is our part to provide for the diffusion and cultivation, not only of true scientific principles, but of a spirit of sound criticism, founded on an examination of the evidences on which statements apparently scientific depend.
When we shall be able to employ in scientific education, not only the trained attention of the student, and his familiarity with symbols, but the keenness of his eye, the quickness of his ear, the delicacy of his touch, and the adroitness of his fingers, we shall not only extend our influence over a cla.s.s of men who are not fond of cold abstractions, but, by opening at once all the gateways of knowledge, we shall ensure the a.s.sociation of the doctrines of science with those elementary sensations which form the obscure background of all our conscious thoughts, and which lend a vividness and relief to ideas, which, when presented as mere abstract terms, are apt to fade entirely from the memory.
In a course of Experimental Physics we may consider either the Physics or the Experiments as the leading feature. We may either employ the experiments to ill.u.s.trate the phenomena of a particular branch of Physics, or we may make some physical research in order to exemplify a particular experimental method. In the order of time, we should begin, in the Lecture Room, with a course of lectures on some branch of Physics aided by experiments of ill.u.s.tration, and conclude, in the Laboratory, with a course of experiments of research.
Let me say a few words on these two cla.s.ses of experiments,--Experiments of Ill.u.s.tration and Experiments of Research.
The aim of an experiment of ill.u.s.tration is to throw light upon some scientific idea so that the student may be enabled to grasp it. The circ.u.mstances of the experiment are so arranged that the phenomenon which we wish to observe or to exhibit is brought into prominence, instead of being obscured and entangled among other phenomena, as it is when it occurs in the ordinary course of nature. To exhibit ill.u.s.trative experiments, to encourage others to make them, and to cultivate in every way the ideas on which they throw light, forms an important part of our duty. The simpler the materials of an ill.u.s.trative experiment, and the more familiar they are to the student, the more thoroughly is he likely to acquire the idea which it is meant to ill.u.s.trate. The educational value of such experiments is often inversely proportional to the complexity of the apparatus. The student who uses home-made apparatus, which is always going wrong, often learns more than one who has the use of carefully adjusted instruments, to which he is apt to trust, and which he dares not take to pieces.
It is very necessary that those who are trying to learn from books the facts of physical science should be enabled by the help of a few ill.u.s.trative experiments to recognise these facts when they meet with them out of doors. Science appears to us with a very different aspect after we have found out that it is not in lecture rooms only, and by means of the electric light projected on a screen, that we may witness physical phenomena, but that we may find ill.u.s.trations of the highest doctrines of science in games and gymnastics, in travelling by land and by water, in storms of the air and of the sea, and wherever there is matter in motion.
This habit of recognising principles amid the endless variety of their action can never degrade our sense of the sublimity of nature, or mar our enjoyment of its beauty. On the contrary, it tends to rescue our scientific ideas from that vague condition in which we too often leave them, buried among the other products of a lazy credulity, and to raise them into their proper position among the doctrines in which our faith is so a.s.sured, that we are ready at all times to act on them.
Experiments of ill.u.s.tration may be of very different kinds. Some may be adaptations of the commonest operations of ordinary life, others may be carefully arranged exhibitions of some phenomenon which occurs only under peculiar conditions. They all, however, agree in this, that their aim is to present some phenomenon to the senses of the student in such a way that he may a.s.sociate with it the appropriate scientific idea. When he has grasped this idea, the experiment which ill.u.s.trates it has served its purpose.
In an experiment of research, on the other hand, this is not the princ.i.p.al aim. It is true that an experiment, in which the princ.i.p.al aim is to see what happens under certain conditions, may be regarded as an experiment of research by those who are not yet familiar with the result, but in experimental researches, strictly so called, the ultimate object is to measure something which we have already seen--to obtain a numerical estimate of some magnitude.
Experiments of this cla.s.s--those in which measurement of some kind is involved, are the proper work of a Physical Laboratory. In every experiment we have first to make our senses familiar with the phenomenon, but we must not stop here, we must find out which of its features are capable of measurement, and what measurements are required in order to make a complete specification of the phenomenon.
We must then make these measurements, and deduce from them the result which we require to find.
This characteristic of modern experiments--that they consist princ.i.p.ally of measurements,--is so prominent, that the opinion seems to have got abroad, that in a few years all the great physical constants will have been approximately estimated, and that the only occupation which will then be left to men of science will be to carry on these measurements to another place of decimals.
If this is really the state of things to which we are approaching, our Laboratory may perhaps become celebrated as a place of conscientious labour and consummate skill, but it will be out of place in the University, and ought rather to be cla.s.sed with the other great workshops of our country, where equal ability is directed to more useful ends.
But we have no right to think thus of the unsearchable riches of creation, or of the untried fertility of those fresh minds into which these riches will continue to be poured. It may possibly be true that, in some of those fields of discovery which lie open to such rough observations as can be made without artificial methods, the great explorers of former times have appropriated most of what is valuable, and that the gleanings which remain are sought after, rather for their abstruseness, than for their intrinsic worth. But the history of science shews that even during that phase of her progress in which she devotes herself to improving the accuracy of the numerical measurement of quant.i.ties with which she has long been familiar, she is preparing the materials for the subjugation of new regions, which would have remained unknown if she had been contented with the rough methods of her early pioneers. I might bring forward instances gathered from every branch of science, shewing how the labour of careful measurement has been rewarded by the discovery of new fields of research, and by the development of new scientific ideas. But the history of the science of terrestrial magnetism affords us a sufficient example of what may be done by Experiments in Concert, such as we hope some day to perform in our Laboratory.
That celebrated traveller, Humboldt, was profoundly impressed with the scientific value of a combined effort to be made by the observers of all nations, to obtain accurate measurements of the magnetism of the earth; and we owe it mainly to his enthusiasm for science, his great reputation and his wide-spread influence, that not only private men of science, but the governments of most of the civilised nations, our own among the number, were induced to take part in the enterprise. But the actual working out of the scheme, and the arrangements by which the labours of the observers were so directed as to obtain the best results, we owe to the great mathematician Gauss, working along with Weber, the future founder of the science of electro-magnetic measurement, in the magnetic observatory of Gottingen, and aided by the skill of the instrument-maker Leyser. These men, however, did not work alone. Numbers of scientific men joined the Magnetic Union, learned the use of the new instruments and the new methods of reducing the observations; and in every city of Europe you might see them, at certain stated times, sitting, each in his cold wooden shed, with his eye fixed at the telescope, his ear attentive to the clock, and his pencil recording in his note-book the instantaneous position of the suspended magnet.
Bacon's conception of "Experiments in concert" was thus realised, the scattered forces of science were converted into a regular army, and emulation and jealousy became out of place, for the results obtained by any one observer were of no value till they were combined with those of the others.
The increase in the accuracy and completeness of magnetic observations which was obtained by the new method, opened up fields of research which were hardly suspected to exist by those whose observations of the magnetic needle had been conducted in a more primitive manner. We must reserve for its proper place in our course any detailed description of the disturbances to which the magnetism of our planet is found to be subject. Some of these disturbances are periodic, following the regular courses of the sun and moon. Others are sudden, and are called magnetic storms, but, like the storms of the atmosphere, they have their known seasons of frequency. The last and the most mysterious of these magnetic changes is that secular variation by which the whole character of the earth, as a great magnet, is being slowly modified, while the magnetic poles creep on, from century to century, along their winding track in the polar regions.
We have thus learned that the interior of the earth is subject to the influences of the heavenly bodies, but that besides this there is a constantly progressive change going on, the cause of which is entirely unknown. In each of the magnetic observatories throughout the world an arrangement is at work, by means of which a suspended magnet directs a ray of light on a preparred sheet of paper moved by clockwork. On that paper the never-resting heart of the earth is now tracing, in telegraphic symbols which will one day be interpreted, a record of its pulsations and its flutterings, as well as of that slow but mighty working which warns us that we must not suppose that the inner history of our planet is ended.
Five of Maxwell's Papers Part 2
You're reading novel Five of Maxwell's Papers Part 2 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
Five of Maxwell's Papers Part 2 summary
You're reading Five of Maxwell's Papers Part 2. This novel has been translated by Updating. Author: James Clerk Maxwell already has 576 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- Five of Maxwell's Papers Part 1
- Five of Maxwell's Papers Part 3