The Movements and Habits of Climbing Plants Part 6
You’re reading novel The Movements and Habits of Climbing Plants Part 6 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
Dicentra thalictrifolia.--In this allied plant the metamorphosis of the terminal leaflets is complete, and they are converted into perfect tendrils. Whilst the plant is young, the tendrils appear like modified branches, and a distinguished botanist thought that they were of this nature; but in a full-grown plant there can be no doubt, as I am a.s.sured by Dr. Hooker, that they are modified leaves.
When of full size, they are above 5 inches in length; they bifurcate twice, thrice, or even four times; their extremities are hooked and blunt. All the branches of the tendrils are sensitive on all sides, but the basal portion of the main stem is only slightly so. The terminal branches when lightly rubbed with a twig became curved in the course of from 30 m. to 42 m., and straightened themselves in between 10 hrs. and 20 hrs. A loop of thread weighing one-eighth of a grain plainly caused the thinner branches to bend, as did occasionally a loop weighing one-sixteenth of a grain; but this latter weight, though left suspended, was not sufficient to cause a permanent flexure. The whole leaf with its tendril, as well as the young upper internodes, revolves vigorously and quickly, though irregularly, and thus sweeps a wide s.p.a.ce. The figure traced on a bell-gla.s.s was either an irregular spire or a zigzag line. The nearest approach to an ellipse was an elongated figure of 8, with one end a little open, and this was completed in 1 hr. 53 m. During a period of 6 hrs. 17 m. another shoot made a complex figure, apparently representing three and a half ellipses. When the lower part of the petiole bearing the leaflets was securely fastened, the tendril itself described similar but much smaller figures.
This species climbs well. The tendrils after clasping a stick become thicker and more rigid; but the blunt hooks do not turn and adapt themselves to the supporting surface, as is done in so perfect a manner by some Bignoniaceae and Cobaea. The tendrils of young plants, two or three feet in height, are only half the length of those borne by the same plant when grown taller, and they do not contract spirally after clasping a support, but only become slightly flexuous. Full-sized tendrils, on the other hand, contract spirally, with the exception of the thick basal portion. Tendrils which have caught nothing simply bend downwards and inwards, like the extremities of the leaves of the Corydalis claviculata. But in all cases the petiole after a time is angularly and abruptly bent downwards like that of Eccremocarpus.
CHAPTER IV.--TENDRIL-BEARERS--(continued).
CUCURBITACEAE.--h.o.m.ologous nature of the tendrils--Echinocystis lobata, remarkable movements of the tendrils to avoid seizing the terminal shoot--Tendrils not excited by contact with another tendril or by drops of water--Undulatory movement of the extremity of the tendril--Hanburya, adherent discs--VITACAE--Gradation between the flower-peduncles and tendrils of the vine--Tendrils of the Virginian Creeper turn from the light, and, after contact, develop adhesive discs--SAPINDACEAE--Pa.s.sIFLORACEAE--Pa.s.siflora gracilis--Rapid revolving movement and sensitiveness of the tendrils--Not sensitive to the contact of other tendrils or of drops of water--Spiral contraction of tendrils--Summary on the nature and action of tendrils.
CUCURBITACEAE.--The tendrils in this family have been ranked by competent judges as modified leaves, stipules, or branches; or as partly a leaf and partly a branch. De Candolle believes that the tendrils differ in their h.o.m.ological nature in two of the tribes.
{29} From facts recently adduced, Mr. Berkeley thinks that Payer's view is the most probable, namely, that the tendril is "a separate portion of the leaf itself;" but much may be said in favour of the belief that it is a modified flower-peduncle. {30}
Echinocystis lobata.--Numerous observations were made on this plant (raised from seed sent me by Prof. Asa Gray), for the spontaneous revolving movements of the internodes and tendrils were first observed by me in this case, and greatly perplexed me. My observations may now be much condensed. I observed thirty-five revolutions of the internodes and tendrils; the slowest rate was 2 hrs. and the average rate, with no great fluctuations, 1 hr. 40 m.
Sometimes I tied the internodes, so that the tendrils alone moved; at other times I cut off the tendrils whilst very young, so that the internodes revolved by themselves; but the rate was not thus affected. The course generally pursued was with the sun, but often in an opposite direction. Sometimes the movement during a short time would either stop or be reversed; and this apparently was due to interference from the light, as, for instance, when I placed a plant close to a window. In one instance, an old tendril, which had nearly ceased revolving, moved in one direction, whilst a young tendril above moved in an opposite course. The two uppermost internodes alone revolve; and as soon as the lower one grows old, only its upper part continues to move. The ellipses or circles swept by the summits of the internodes are about three inches in diameter; whilst those swept by the tips of the tendrils, are from 15 to 16 inches in diameter. During the revolving movement, the internodes become successively curved to all points of the compa.s.s; in one part of their course they are often inclined, together with the tendrils, at about 45 degrees to the horizon, and in another part stand vertically up. There was something in the appearance of the revolving internodes which continually gave the false impression that their movement was due to the weight of the long and spontaneously revolving tendril; but, on cutting off the latter with sharp scissors, the top of the shoot rose only a little, and went on revolving. This false appearance is apparently due to the internodes and tendrils all curving and moving harmoniously together.
A revolving tendril, though inclined during the greater part of its course at an angle of about 45 degrees (in one case of only 37 degrees) above the horizon, stiffened and straightened itself from tip to base in a certain part of its course, thus becoming nearly or quite vertical. I witnessed this repeatedly; and it occurred both when the supporting internodes were free and when they were tied up; but was perhaps most conspicuous in the latter case, or when the whole shoot happened to be much inclined. The tendril forms a very acute angle with the projecting extremity of the stem or shoot; and the stiffening always occurred as the tendril approached, and had to pa.s.s over the shoot in its circular course. If it had not possessed and exercised this curious power, it would infallibly have struck against the extremity of the shoot and been arrested. As soon as the tendril with its three branches begins to stiffen itself in this manner and to rise from an inclined into a vertical position, the revolving motion becomes more rapid; and as soon as the tendril has succeeded in pa.s.sing over the extremity of the shoot or point of difficulty, its motion, coinciding with that from its weight, often causes it to fall into its previously inclined position so quickly, that the apex could be seen travelling like the minute hand of a gigantic clock.
The tendrils are thin, from 7 to 9 inches in length, with a pair of short lateral branches rising not far from the base. The tip is slightly and permanently curved, so as to act to a limited extent as a hook. The concave side of the tip is highly sensitive to a touch; but not so the convex side, as was likewise observed to be the case with other species of the family by Mohl (p. 65). I repeatedly proved this difference by lightly rubbing four or five times the convex side of one tendril, and only once or twice the concave side of another tendril, and the latter alone curled inwards. In a few hours afterwards, when the tendrils which had been rubbed on the concave side had straightened themselves, I reversed the process of rubbing, and always with the same result. After touching the concave side, the tip becomes sensibly curved in one or two minutes; and subsequently, if the touch has been at all rough, it coils itself into a helix. But the helix will, after a time, straighten itself, and be again ready to act. A loop of thin thread only one-sixteenth of a grain in weight caused a temporary flexure. The lower part was repeatedly rubbed rather roughly, but no curvature ensued; yet this part is sensitive to prolonged pressure, for when it came into contact with a stick, it would slowly wind round it.
One of my plants bore two shoots near together, and the tendrils were repeatedly drawn across one another, but it is a singular fact that they did not once catch each other. It would appear as if they had become habituated to contact of this kind, for the pressure thus caused must have been much greater than that caused by a loop of soft thread weighing only the one-sixteenth of a grain. I have, however, seen several tendrils of Bryonia dioica interlocked, but they subsequently released one another. The tendrils of the Echinocystis are also habituated to drops of water or to rain; for artificial rain made by violently flirting a wet brush over them produced not the least effect.
The revolving movement of a tendril is not stopped by the curving of its extremity after it has been touched. When one of the lateral branches has firmly clasped an object, the middle branch continues to revolve. When a stem is bent down and secured, so that the tendril depends but is left free to move, its previous revolving movement is nearly or quite stopped; but it soon begins to bend upwards, and as soon as it has become horizontal the revolving movement recommences.
I tried this four times; the tendril generally rose to a horizontal position in an hour or an hour and a half; but in one case, in which a tendril depended at an angle of 45 degrees beneath the horizon, the uprising took two hours; in half an hour afterwards it rose to 23 degrees above the horizon and then recommenced revolving. This upward movement is independent of the action of light, for it occurred twice in the dark, and on another occasion the light came in on one side alone. The movement no doubt is guided by opposition to the force of gravity, as in the case of the ascent of the plumules of germinating seeds.
A tendril does not long retain its revolving power; and as soon as this is lost, it bends downwards and contracts spirally. After the revolving movement has ceased, the tip still retains for a short time its sensitiveness to contact, but this can be of little or no use to the plant.
Though the tendril is highly flexible, and though the extremity travels, under favourable circ.u.mstances, at about the rate of an inch in two minutes and a quarter, yet its sensitiveness to contact is so great that it hardly ever fails to seize a thin stick placed in its path. The following case surprised me much: I placed a thin, smooth, cylindrical stick (and I repeated the experiment seven times) so far from a tendril, that its extremity could only curl half or three-quarters round the stick; but I always found that the tip managed in the course of a few hours to curl twice or even thrice round the stick. I at first thought that this was due to rapid growth on the outside; but by coloured points and measurements I proved that there had been no sensible increase of length within the time. When a stick, flat on one side, was similarly placed, the tip of the tendril could not curl beyond the flat surface, but coiled itself into a helix, which, turning to one side, lay flat on the little flat surface of wood. In one instance a portion of tendril three-quarters of an inch in length was thus dragged on to the flat surface by the coiling in of the helix. But the tendril thus acquires a very insecure hold, and generally after a time slips off.
In one case alone the helix subsequently uncoiled itself, and the tip then pa.s.sed round and clasped the stick. The formation of the helix on the flat side of the stick apparently shows us that the continued striving of the tip to curl itself closely inwards gives the force which drags the tendril round a smooth cylindrical stick. In this latter case, whilst the tendril was slowly and quite insensibly crawling onwards, I observed several times through a lens that the whole surface was not in close contact with the stick; and I can understand the onward progress only by supposing that the movement is slightly undulatory or vermicular, and that the tip alternately straightens itself a little and then again curls inwards. It thus drags itself onwards by an insensibly slow, alternate movement, which may be compared to that of a strong man suspended by the ends of his fingers to a horizontal pole, who works his fingers onwards until he can grasp the pole with the palm of his hand. However this may be, the fact is certain that a tendril which has caught a round stick with its extreme point, can work itself onwards until it has pa.s.sed twice or even thrice round the stick, and has permanently grasped it.
Hanburya Mexicana.--The young internodes and tendrils of this anomalous member of the family, revolve in the same manner and at about the same rate as those of the Echinocystis. The stem does not twine, but can ascend an upright stick by the aid of its tendrils.
The concave tip of the tendril is very sensitive; after it had become rapidly coiled into a ring owing to a single touch, it straightened itself in 50 m. The tendril, when in full action, stands vertically up, with the projecting extremity of the young stem thrown a little on one side, so as to be out of the way; but the tendril bears on the inner side, near its base, a short rigid branch, which projects out at right angles like a spur, with the terminal half bowed a little downwards. Hence, as the main vertical branch revolves, the spur, from its position and rigidity, cannot pa.s.s over the extremity of the shoot, in the same curious manner as do the three branches of the tendril of the Echinocystis, namely, by stiffening themselves at the proper point. The spur is therefore pressed laterally against the young stem in one part of the revolving course, and thus the sweep of the lower part of the main branch is much restricted. A nice case of co-adaptation here comes into play: in all the other tendrils observed by me, the several branches become sensitive at the same period: had this been the case with the Hanburya, the inwardly directed, spur-like branch, from being pressed, during the revolving movement, against the projecting end of the shoot, would infallibly have seized it in a useless or injurious manner. But the main branch of the tendril, after revolving for a time in a vertical position, spontaneously bends downwards; and in doing so, raises the spur-like branch, which itself also curves upwards; so that by these combined movements it rises above the projecting end of the shoot, and can now move freely without touching the shoot; and now it first becomes sensitive.
The tips of both branches, when they come into contact with a stick, grasp it like any ordinary tendril. But in the course of a few days, the lower surface swells and becomes developed into a cellular layer, which adapts itself closely to the wood, and firmly adheres to it.
This layer is a.n.a.logous to the adhesive discs formed by the extremities of the tendrils of some species of Bignonia and of Ampelopsis; but in the Hanburya the layer is developed along the terminal inner surface, sometimes for a length of 1.75 inches, and not at the extreme tip. The layer is white, whilst the tendril is green, and near the tip it is sometimes thicker than the tendril itself; it generally spreads a little beyond the sides of the tendril, and is fringed with free elongated cells, which have enlarged globular or retort-shaped heads. This cellular layer apparently secretes some resinous cement; for its adhesion to the wood was not lessened by an immersion of 24 hrs. in alcohol or water, but was quite loosened by a similar immersion in ether or turpentine.
After a tendril has once firmly coiled itself round a stick, it is difficult to imagine of what use the adhesive cellular layer can be.
Owing to the spiral contraction which soon ensues, the tendrils were never able to remain, excepting in one instance, in contact with a thick post or a nearly flat surface; if they had quickly become attached by means of the adhesive layer, this would evidently have been of service to the plant.
The tendrils of Bryonia dioica, Cucurbita ovifera, and Cuc.u.mis sativa are sensitive and revolve. Whether the internodes likewise revolve I did not observe. In Anguria Warscewiczii, the internodes, though thick and stiff, revolve: in this plant the lower surface of the tendril, some time after clasping a stick, produces a coa.r.s.ely cellular layer or cus.h.i.+on, which adapts itself closely to the wood, like that formed by the tendril of the Hanburya; but it is not in the least adhesive. In Zanonia Indica, which belongs to a different tribe of the family, the forked tendrils and the internodes revolve in periods between 2 hrs. 8 m. and 3 hrs. 35 m., moving against the sun.
VITACEAE.--In this family and in the two following, namely, the Sapindaceae and Pa.s.sifloraceae, the tendrils are modified flower- peduncles; and are therefore axial in their nature. In this respect they differ from all those previously described, with the exception, perhaps, of the Cucurbitaceae. The h.o.m.ological nature, however, of a tendril seems to make no difference in its action.
Vitis vinifera.--The tendril is thick and of great length; one from a vine growing out of doors and not vigorously, was 16 inches long. It consists of a peduncle (A), bearing two branches which diverge equally from it. One of the branches (B) has a scale at its base; it is always, as far as I have seen, longer than the other and often bifurcates. The branches when rubbed become curved, and subsequently straighten themselves. After a tendril has clasped any object with its extremity, it contracts spirally; but this does not occur (Palm, p. 56) when no object has been seized. The tendrils move spontaneously from side to side; and on a very hot day, one made two elliptical revolutions, at an average rate of 2 hrs. 15 m. During these movements a coloured line, painted along the convex surface, appeared after a time on one side, then on the concave side, then on the opposite side, and lastly again on the convex side. The two branches of the same tendril have independent movements. After a tendril has spontaneously revolved for a time, it bends from the light towards the dark: I do not state this on my own authority, but on that of Mohl and Dutrochet. Mohl (p. 77) says that in a vine planted against a wall the tendrils point towards it, and in a vineyard generally more or less to the north.
The young internodes revolve spontaneously; but the movement is unusually slight. A shoot faced a window, and I traced its course on the gla.s.s during two perfectly calm and hot days. On one of these days it described, in the course of ten hours, a spire, representing two and a half ellipses. I also placed a bell-gla.s.s over a young Muscat grape in the hot-house, and it made each day three or four very small oval revolutions; the shoot moving less than half an inch from side to side. Had it not made at least three revolutions whilst the sky was uniformly overcast, I should have attributed this slight degree of movement to the varying action of the light. The extremity of the stem is more or less bent downwards, but it never reverses its curvature, as so generally occurs with twining plants.
Various authors (Palm, p. 55; Mohl, p. 45; Lindley, &c.) believe that the tendrils of the vine are modified flower-peduncles. I here give a drawing (fig. 10) of the ordinary state of a young flower-stalk: it consists of the "common peduncle" (A); of the "flower-tendril"
(B), which is represented as having caught a twig; and of the "sub- peduncle" (C) bearing the flower-buds. The whole moves spontaneously, like a true tendril, but in a less degree; the movement, however, is greater when the sub-peduncle (C) does not bear many flower-buds. The common peduncle (A) has not the power of clasping a support, nor has the corresponding part of a true tendril.
The flower-tendril (B) is always longer than the sub-peduncle (C) and has a scale at its base; it sometimes bifurcates, and therefore corresponds in every detail with the longer scale-bearing branch (B, fig. 9) of the true tendril. It is, however, inclined backwards from the sub-peduncle (C), or stands at right angles with it, and is thus adapted to aid in carrying the future bunch of grapes. When rubbed, it curves and subsequently straightens itself; and it can, as is shown in the drawing, securely clasp a support. I have seen an object as soft as a young vine-leaf caught by one.
The lower and naked part of the sub-peduncle (C) is likewise slightly sensitive to a rub, and I have seen it bent round a stick and even partly round a leaf with which it had come into contact. That the sub-peduncle has the same nature as the corresponding branch of an ordinary tendril, is well shown when it bears only a few flowers; for in this case it becomes less branched, increases in length, and gains both in sensitiveness and in the power of spontaneous movement. I have twice seen sub-peduncles which bore from thirty to forty flower- buds, and which had become considerably elongated and were completely wound round sticks, exactly like true tendrils. The whole length of another sub-peduncle, bearing only eleven flower-buds, quickly became curved when slightly rubbed; but even this scanty number of flowers rendered the stalk less sensitive than the other branch, that is, the flower-tendril; for the latter after a lighter rub became curved more quickly and in a greater degree. I have seen a sub-peduncle thickly covered with flower-buds, with one of its higher lateral branchlets bearing from some cause only two buds; and this one branchlet had become much elongated and had spontaneously caught hold of an adjoining twig; in fact, it formed a little sub-tendril. The increasing length of the sub-peduncle (C) with the decreasing number of the flower-buds is a good instance of the law of compensation. In accordance with this same principle, the true tendril as a whole is always longer than the flower-stalk; for instance, on the same plant, the longest flower-stalk (measured from the base of the common peduncle to the tip of the flower-tendril) was 8.5 inches in length, whilst the longest tendril was nearly double this length, namely 16 inches.
The gradations from the ordinary state of a flower-stalk, as represented in the drawing (fig. 10), to that of a true tendril (fig.
9) are complete. We have seen that the sub-peduncle (C), whilst still bearing from thirty to forty flower-buds, sometimes becomes a little elongated and partially a.s.sumes all the characters of the corresponding branch of a true tendril. From this state we can trace every stage till we come to a full-sized perfect tendril, bearing on the branch which corresponds with the sub-peduncle one single flower- bud! Hence there can be no doubt that the tendril is a modified flower-peduncle.
Another kind of gradation well deserves notice. Flower-tendrils (B, fig. 10) sometimes produce a few flower-buds. For instance, on a vine growing against my house, there were thirteen and twenty-two flower-buds respectively on two flower-tendrils, which still retained their characteristic qualities of sensitiveness and spontaneous movement, but in a somewhat lessened degree. On vines in hothouses, so many flowers are occasionally produced on the flower-tendrils that a double bunch of grapes is the result; and this is technically called by gardeners a "cl.u.s.ter." In this state the whole bunch of flowers presents scarcely any resemblance to a tendril; and, judging from the facts already given, it would probably possess little power of clasping a support, or of spontaneous movement. Such flower- stalks closely resemble in structure those borne by Cissus. This genus, belonging to the same family of the Vitaceae, produces well- developed tendrils and ordinary bunches of flowers; but there are no gradations between the two states. If the genus Vitis had been unknown, the boldest believer in the modification of species would never have surmised that the same individual plant, at the same period of growth, would have yielded every possible gradation between ordinary flower-stalks for the support of the flowers and fruit, and tendrils used exclusively for climbing. But the vine clearly gives us such a case; and it seems to me as striking and curious an instance of transition as can well be conceived.
Cissus discolor.--The young shoots show no more movement than can be accounted for by daily variations in the action of the light. The tendrils, however, revolve with much regularity, following the sun; and, in the plants observed by me, swept circles of about 5 inches in diameter. Five circles were completed in the following times:- 4 hrs. 45 m., 4 hrs. 50 m., 4 hrs. 45 m., 4 hrs. 30 m., and 5 hrs. The same tendril continues to revolve during three or four days. The tendrils are from 3.5 to 5 inches in length. They are formed of a long foot-stalk, bearing two short branches, which in old plants again bifurcate. The two branches are not of quite equal length; and as with the vine, the longer one has a scale at its base. The tendril stands vertically upwards; the extremity of the shoot being bent abruptly downwards, and this position is probably of service to the plant by allowing the tendril to revolve freely and vertically.
Both branches of the tendril, whilst young, are highly sensitive. A touch with a pencil, so gentle as only just to move a tendril borne at the end of a long flexible shoot, sufficed to cause it to become perceptibly curved in four or five minutes. It became straight again in rather above one hour. A loop of soft thread weighing one-seventh of a grain (9.25 mg.) was thrice tried, and each time caused the tendril to become curved in 30 or 40 m. Half this weight produced no effect. The long foot-stalk is much less sensitive, for a slight rubbing produced no effect, although prolonged contact with a stick caused it to bend. The two branches are sensitive on all sides, so that they converge if touched on their inner sides, and diverge if touched on their outer sides. If a branch be touched at the same time with equal force on opposite sides, both sides are equally stimulated and there is no movement. Before examining this plant, I had observed only tendrils which are sensitive on one side alone, and these when lightly pressed between the finger and thumb become curved; but on thus pinching many times the tendrils of the Cissus no curvature ensued, and I falsely inferred at first that they were not at all sensitive.
Cissus antarcticus.--The tendrils on a young plant were thick and straight, with the tips a little curved. When their concave surfaces were rubbed, and it was necessary to do this with some force, they very slowly became curved, and subsequently straight again. They are therefore much less sensitive than those of the last species; but they made two revolutions, following the sun, rather more rapidly, viz., in 3 hrs. 30 m. and 4 hrs. The internodes do not revolve.
Ampelopsis hederacea (Virginian Creeper).--The internodes apparently do not move more than can be accounted for by the varying action of the light. The tendrils are from 4 to 5 inches in length, with the main stem sending off several lateral branches, which have their tips curved, as may be seen in the upper figure (fig. 11). They exhibit no true spontaneous revolving movement, but turn, as was long ago observed by Andrew Knight, {31} from the light to the dark. I have seen several tendrils move in less than 24 hours, through an angle of 180 degrees to the dark side of a case in which a plant was placed, but the movement is sometimes much slower. The several lateral branches often move independently of one another, and sometimes irregularly, without any apparent cause. These tendrils are less sensitive to a touch than any others observed by me. By gentle but repeated rubbing with a twig, the lateral branches, but not the main stem, became in the course of three or four hours slightly curved; but they seemed to have hardly any power of again straightening themselves. The tendrils of a plant which had crawled over a large box-tree clasped several of the branches; but I have repeatedly seen that they will withdraw themselves after seizing a stick. When they meet with a flat surface of wood or a wall (and this is evidently what they are adapted for), they turn all their branches towards it, and, spreading them widely apart, bring their hooked tips laterally into contact with it. In effecting this, the several branches, after touching the surface, often rise up, place themselves in a new position, and again come down into contact with it.
In the course of about two days after a tendril has arranged its branches so as to press on any surface, the curved tips swell, become bright red, and form on their under-sides the well-known little discs or cus.h.i.+ons with which they adhere firmly. In one case the tips were slightly swollen in 38 hrs. after coming into contact with a brick; in another case they were considerably swollen in 48 hrs., and in an additional 24 hrs. were firmly attached to a smooth board; and lastly, the tips of a younger tendril not only swelled but became attached to a stuccoed wall in 42 hrs. These adhesive discs resemble, except in colour and in being larger, those of Bignonia capreolata. When they were developed in contact with a ball of tow, the fibres were separately enveloped, but not in so effective a manner as by B. capreolata. Discs are never developed, as far as I have seen, without the stimulus of at least temporary contact with some object. {32} They are generally first formed on one side of the curved tip, the whole of which often becomes so much changed in appearance, that a line of the original green tissue can be traced only along the concave surface. When, however, a tendril has clasped a cylindrical stick, an irregular rim or disc is sometimes formed along the inner surface at some little distance from the curved tip; this was also observed (p. 71) by Mohl. The discs consist of enlarged cells, with smooth projecting hemispherical surfaces, coloured red; they are at first gorged with fluid (see section given by Mohl, p. 70), but ultimately become woody.
As the discs soon adhere firmly to such smooth surfaces as planed or painted wood, or to the polished leaf of the ivy, this alone renders it probable that some cement is secreted, as has been a.s.serted to be the case (quoted by Mohl, p. 71) by Malpighi. I removed a number of discs formed during the previous year from a stuccoed wall, and left them during many hours, in warm water, diluted acetic acid and alcohol; but the attached grains of silex were not loosened.
Immersion in sulphuric ether for 24 hrs. loosened them much, but warmed essential oils (I tried oil of thyme and peppermint) completely released every particle of stone in the course of a few hours. This seems to prove that some resinous cement is secreted.
The quant.i.ty, however, must be small; for when a plant ascended a thinly whitewashed wall, the discs adhered firmly to the whitewash; but as the cement never penetrated the thin layer, they were easily withdrawn, together with little scales of the whitewash. It must not be supposed that the attachment is effected exclusively by the cement; for the cellular outgrowth completely envelopes every minute and irregular projection, and insinuates itself into every crevice.
A tendril which has not become attached to any body, does not contract spirally; and in course of a week or two shrinks into the finest thread, withers and drops off. An attached tendril, on the other hand, contracts spirally, and thus becomes highly elastic, so that when the main foot-stalk is pulled the strain is distributed equally between all the attached discs. For a few days after the attachment of the discs, the tendril remains weak and brittle, but it rapidly increases in thickness and acquires great strength. During the following winter it ceases to live, but adheres firmly in a dead state both to its own stem and to the surface of attachment. In the accompanying diagram (fig. 11.) we see the difference between a tendril (B) some weeks after its attachment to a wall, with one (A) from the same plant fully grown but unattached. That the change in the nature of the tissues, as well as the spiral contraction, are consequent on the formation of the discs, is well shown by any lateral branches which have not become attached; for these in a week or two wither and drop off, in the same manner as does the whole tendril if unattached. The gain in strength and durability in a tendril after its attachment is something wonderful. There are tendrils now adhering to my house which are still strong, and have been exposed to the weather in a dead state for fourteen or fifteen years. One single lateral branchlet of a tendril, estimated to be at least ten years old, was still elastic and supported a weight of exactly two pounds. The whole tendril had five disc-bearing branches of equal thickness and apparently of equal strength; so that after having been exposed during ten years to the weather, it would probably have resisted a strain of ten pounds!
SAPINDACEAE.--Cardiospermum halicacab.u.m.--In this family, as in the last, the tendrils are modified flower-peduncles. In the present plant the two lateral branches of the main flower-peduncle have been converted into a pair of tendrils, corresponding with the single "flower-tendril" of the common vine. The main peduncle is thin, stiff, and from 3 to 4.5 inches in length. Near the summit, above two little bracts, it divides into three branches. The middle one divides and re-divides, and bears the flowers; ultimately it grows half as long again as the two other modified branches. These latter are the tendrils; they are at first thicker and longer than the middle branch, but never become more than an inch in length. They taper to a point and are flattened, with the lower clasping surface dest.i.tute of hairs. At first they project straight up; but soon diverging, spontaneously curl downwards so as to become symmetrically and elegantly hooked, as represented in the diagram. They are now, whilst the flower-buds are still small, ready for action.
The two or three upper internodes, whilst young, steadily revolve; those on one plant made two circles, against the course of the sun, in 3 hrs. 12 m.; in a second plant the same course was followed, and the two circles were completed in 3 hrs. 41 m.; in a third plant, the internodes followed the sun and made two circles in 3 hrs. 47 m. The average rate of these six revolutions was 1 hr. 46 m. The stem shows no tendency to twine spirally round a support; but the allied tendril-bearing genus Paullinia is said (Mohl, p. 4) to be a twiner.
The flower-peduncles, which stand up above the end of the shoot, are carried round and round by the revolving movement of the internodes; and when the stem is securely tied, the long and thin flower- peduncles themselves are seen to be in continued and sometimes rapid movement from side to side. They sweep a wide s.p.a.ce, but only occasionally revolve in a regular elliptical course. By the combined movements of the internodes and peduncles, one of the two short hooked tendrils, sooner or later, catches hold of some twig or branch, and then it curls round and securely grasps it. These tendrils are, however, but slightly sensitive; for by rubbing their under surface only a slight movement is slowly produced. I hooked a tendril on to a twig; and in 1 hr. 45 m. it was curved considerably inwards; in 2 hrs. 30 m. it formed a ring; and in from 5 to 6 hours from being first hooked, it closely grasped the stick. A second tendril acted at nearly the same rate; but I observed one that took 24 hours before it curled twice round a thin twig. Tendrils which have caught nothing, spontaneously curl up to a close helix after the interval of several days. Those which have curled round some object, soon become a little thicker and tougher. The long and thin main peduncle, though spontaneously moving, is not sensitive and never clasps a support. Nor does it ever contract spirally, {33} although a contraction of this kind apparently would have been of service to the plant in climbing. Nevertheless it climbs pretty well without this aid. The seed-capsules though light, are of enormous size (hence its English name of balloon-vine), and as two or three are carried on the same peduncle, the tendrils rising close to them may be of service in preventing their being dashed to pieces by the wind.
In the hothouse the tendrils served simply for climbing.
The position of the tendrils alone suffices to show their h.o.m.ological nature. In two instances one of two tendrils produced a flower at its tip; this, however, did not prevent its acting properly and curling round a twig. In a third case both lateral branches which ought to have been modified into tendrils, produced flowers like the central branch, and had quite lost their tendril-structure.
I have seen, but was not enabled carefully to observe, only one other climbing Sapindaceous plant, namely, Paullinia. It was not in flower, yet bore long forked tendrils. So that, Paullinia, with respect to its tendrils, appears to bear the same relation to Cardiospermum that Cissus does to Vitis.
Pa.s.sIFLORACEAE.--After reading the discussion and facts given by Mohl (p. 47) on the nature of the tendrils in this family, no one can doubt that they are modified flower-peduncles. The tendrils and the flower-peduncles rise close side by side; and my son, William E.
Darwin, made sketches for me of their earliest state of development in the hybrid P. floribunda. The two organs appear at first as a single papilla which gradually divides; so that the tendril appears to be a modified branch of the flower-peduncle. My son found one very young tendril surmounted by traces of floral organs, exactly like those on the summit of the true flower-peduncle at the same early age.
Pa.s.siflora gracilis.--This well-named, elegant, annual species differs from the other members of the group observed by me, in the young internodes having the power of revolving. It exceeds all the other climbing plants which I have examined, in the rapidity of its movements, and all tendril-bearers in the sensitiveness of the tendrils. The internode which carries the upper active tendril and which likewise carries one or two younger immature internodes, made three revolutions, following the sun, at an average rate of 1 hr. 4 m.; it then made, the day becoming very hot, three other revolutions at an average rate of between 57 and 58 m.; so that the average of all six revolutions was 1 hr. 1 m. The apex of the tendril describes elongated ellipses, sometimes narrow and sometimes broad, with their longer axes inclined in slightly different directions. The plant can ascend a thin upright stick by the aid of its tendrils; but the stem is too stiff for it to twine spirally round it, even when not interfered with by the tendrils, these having been successively pinched off at an early age.
When the stem is secured, the tendrils are seen to revolve in nearly the same manner and at the same rate as the internodes. {34} The tendrils are very thin, delicate, and straight, with the exception of the tips, which are a little curved; they are from 7 to 9 inches in length. A half-grown tendril is not sensitive; but when nearly full- grown they are extremely sensitive. A single delicate touch on the concave surface of the tip soon caused one to curve; and in 2 minutes it formed an open helix. A loop of soft thread weighing one thirty- second of a grain (2.02 mg.) placed most gently on the tip, thrice caused distinct curvature. A bent bit of thin platina wire weighing only fiftieth of a grain (1.23 mg.) twice produced the same effect; but this latter weight, when left suspended, did not suffice to cause a permanent curvature. These trials were made under a bell-gla.s.s, so that the loops of thread and wire were not agitated by the wind. The movement after a touch is very rapid: I took hold of the lower part of several tendrils, and then touched their concave tips with a thin twig and watched them carefully through a lens; the tips evidently began to bend after the following intervals--31, 25, 32, 31, 28, 39, 31, and 30 seconds; so that the movement was generally perceptible in half a minute after a touch; but on one occasion it was distinctly visible in 25 seconds. One of the tendrils which thus became bent in 31 seconds, had been touched two hours previously and had coiled into a helix; so that in this interval it had straightened itself and had perfectly recovered its irritability.
To ascertain how often the same tendril would become curved when touched, I kept a plant in my study, which from being cooler than the hot-house was not very favourable for the experiment. The extremity was gently rubbed four or five times with a thin stick, and this was done as often as it was observed to have become nearly straight again after having been in action; and in the course of 54 hrs. it answered to the stimulus 21 times, becoming each time hooked or spiral. On the last occasion, however, the movement was very slight, and soon afterwards permanent spiral contraction commenced. No trials were made during the night, so that the tendril would perhaps have answered a greater number of times to the stimulus; though, on the other hand, from having no rest it might have become exhausted from so many quickly repeated efforts.
I repeated the experiment made on the Echinocystis, and placed several plants of this Pa.s.siflora so close together, that their tendrils were repeatedly dragged over each other; but no curvature ensued. I likewise repeatedly flirted small drops of water from a brush on many tendrils, and syringed others so violently that the whole tendril was dashed about, but they never became curved. The impact from the drops of water was felt far more distinctly on my hand than that from the loops of thread (weighing one thirty-second of a grain) when allowed to fall on it from a height, and these loops, which caused the tendrils to become curved, had been placed most gently on them. Hence it is clear, that the tendrils either have become habituated to the touch of other tendrils and drops of rain, or that they were from the first rendered sensitive only to prolonged though excessively slight pressure of solid objects, with the exclusion of that from other tendrils. To show the difference in the kind of sensitiveness in different plants and likewise to show the force of the syringe used, I may add that the lightest jet from it instantly caused the leaves of a Mimosa to close; whereas the loop of thread weighing one thirty-second of a grain, when rolled into a ball and placed gently on the glands at the bases of the leaflets of the Mimosa, caused no action.
Pa.s.siflora punctata.--The internodes do not move, but the tendrils revolve regularly. A half-grown and very sensitive tendril made three revolutions, opposed to the course of the sun, in 3 hrs. 5 m., 2 hrs. 40 m. and 2 hrs. 50 m.; perhaps it might have travelled more quickly when nearly full-grown. A plant was placed in front of a window, and, as with twining stems, the light accelerated the movement of the tendril in one direction and r.e.t.a.r.ded it in the other; the semicircle towards the light being performed in one instance in 15 m. less time and in a second instance in 20 m. less time than that required by the semicircle towards the dark end of the room. Considering the extreme tenuity of these tendrils, the action of the light on them is remarkable. The tendrils are long, and, as just stated, very thin, with the tip slightly curved or hooked. The concave side is extremely sensitive to a touch--even a single touch causing it to curl inwards; it subsequently straightened itself, and was again ready to act. A loop of soft thread weighing one fourteenth of a grain (4.625 mg.) caused the extreme tip to bend; another time I tried to hang the same little loop on an inclined tendril, but three times it slid off; yet this extraordinarily slight degree of friction sufficed to make the tip curl. The tendril, though so sensitive, does not move very quickly after a touch, no conspicuous movement being observable until 5 or 10 m. had elapsed.
The convex side of the tip is not sensitive to a touch or to a suspended loop of thread. On one occasion I observed a tendril revolving with the convex side of the tip forwards, and in consequence it was not able to clasp a stick, against which it sc.r.a.ped; whereas tendrils revolving with the concave side forward, promptly seize any object in their path.
The Movements and Habits of Climbing Plants Part 6
You're reading novel The Movements and Habits of Climbing Plants Part 6 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
The Movements and Habits of Climbing Plants Part 6 summary
You're reading The Movements and Habits of Climbing Plants Part 6. This novel has been translated by Updating. Author: Charles Darwin already has 483 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- The Movements and Habits of Climbing Plants Part 5
- The Movements and Habits of Climbing Plants Part 7