The New Heavens Part 3

You’re reading novel The New Heavens Part 3 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

The distance of Antares, though not very accurately known, is probably not far from 350 light-years. Its angular diameter of 0.040 of a second would thus correspond to a linear diameter of about 400 million miles.]

We may thus form a new picture of the two branches of the temperature curve, long since suggested by Lockyer, on very different grounds, as the outline of stellar life. On the ascending side are the giants, of vast dimensions and more diffuse than the air we breathe. There are good reasons for believing that the ma.s.s of Betelgeuse cannot be more than ten times that of the sun, while its volume is at least a million times as great and may exceed eight million times the sun's volume. Therefore, its average density must be like that of an attenuated gas in an electric vacuum tube. Three-quarters of the naked-eye stars are in the giant stage, which comprises such familiar objects as Betelgeuse, Antares, and Aldebaran, but most of them are much denser than these greatly inflated bodies.

The pinnacle is reached in the intensely hot white stars of the helium cla.s.s, in whose spectra the lines of this gas are very conspicuous. The density of these stars is perhaps one-tenth that of the sun. Sirius, also very hot, is nearly twice as dense. Then comes the cooling stage, characterized, as already remarked, by increasing density, and also by increasing chemical complexity resulting from falling temperature. This life cycle is probably not followed by all stars, but it may hold true for millions of them.

The existence of giant and dwarf stars has been fully proved by the remarkable work of Adams and his a.s.sociates on Mount Wilson, where his method of determining a star's distance and intrinsic luminosity by spectroscopic observations has already been applied to 2,000 stars. Discussion of the results leads at once to the recognition of the two great cla.s.ses of giants and dwarfs. Now comes the work of Michelson and Pease to cap the climax, giving us the actual diameter of a typical giant star, in close agreement with predictions based upon theory. From this diameter we may conclude that the density of Betelgeuse is extremely low, in harmony with Russell's theory, which is further supported by spectroscopic a.n.a.lysis of the star's light, revealing evidence of the comparatively low temperature called for by the theory at this early stage of stellar existence.

TWO OTHER GIANTS



The diameter of Arcturus was successfully measured by Mr. Pease at Mount Wilson on April 15. As the mirrors of the interferometer were moved apart, the fringes gradually decreased in visibility until they finally disappeared at a mirror separation of 19.6 feet.

Adopting a mean wave-length of 5600/10000000 of a millimetre for the light of Arcturus, this gives a value of 0.022 of a second of arc for the angular diameter of the star. If we use a mean value of 0.095 of a second for the parallax, the corresponding linear diameter comes out 21,000,000 miles. The angular diameter, as in the case of Betelgeuse, is in remarkably close agreement with the diameter predicted from theory. Antares, the third star measured by Mr. Pease, is the largest of all. If it is actually a member of the Scorpius-Centaurus group, as we have strong reason to believe, it is fully 350 light-years from the earth, and its diameter is about 400,000,000 miles.

[Ill.u.s.tration: Fig. 28. Diameters of the Sun, Arcturus, Betelgeuse, and Antares compared with the orbit of Mars.

Sun, diameter, 865,000 miles.

Arcturus, diameter, 21,000,000 miles.

Betelgeuse, diameter, 215,000,000 miles.

Antares, diameter, 400,000,000 miles.]

It now remains to make further measures of Betelgeuse, especially because its marked changes in brightness suggest possible variations in diameter. We must also apply the interferometer method to stars of the various spectral types, in order to afford a sure basis for future studies of stellar evolution. Unfortunately, only a few giant stars are certain to fall within the range of our present instrument. An interferometer of 70-feet aperture would be needed to measure Sirius accurately, and one of twice this size to deal with less brilliant white stars. A 100-foot instrument, if feasible to build, would permit objects representing most of the chief stages of stellar development to be measured, thus contributing in the highest degree to the progress of our knowledge of the life history of the stars. Fortunately, though the mechanical difficulties are great, the optical problem is insignificant, and the cost of the entire apparatus, though necessarily high, would be only a small fraction of that of a telescope of corresponding aperture, if such could be built. A 100-foot interferometer might be designed in many different forms, and one of these may ultimately be found to be within the range of possibility. Meanwhile the 20-foot interferometer has been improved so materially that it now promises to yield approximate measures of stars at first supposed to be beyond its capacity.

[Ill.u.s.tration: Fig. 29. Aldebaran, the "leader" (of the Pleiades), was also known to the Arabs as "The Eye of the Bull," "The Heart of the Bull," and "The Great Camel" (Hubble).

Like Betelgeuse and Antares, it is notable for its red color, which accounts for the fact that its image on this photograph is hardly more conspicuous than the images of stars which are actually much fainter but contain a larger proportion of blue light, to which the photographic plates here employed are more sensitive than to red or yellow. Aldebaran is about 50 light-years from the earth.

Interferometer measures, now in progress on Mount Wilson, indicate that its angular diameter is about 0.020 of a second.]

While the theory of dwarf and giant stars and the measurements just described afford no direct evidence bearing on Laplace's explanation of the formation of planets, they show that stars exist which are comparable in diameter with our solar system, and suggest that the sun must have shrunk from vast dimensions. The mode of formation of systems like our own, and of other systems numerously ill.u.s.trated in the heavens, is one of the most fascinating problems of astronomy.

Much light has been thrown on it by recent investigations, rendered possible by the development of new and powerful instruments and by advances in physics of the most fundamental character. All the evidence confirms the existence of dwarf and giant stars, but much work must be done before the entire course of stellar evolution can be explained.

CHAPTER III

COSMIC CRUCIBLES

"Shelter during Raids," marking the entrance to underground pa.s.sages, was a sign of common occurrence and sinister suggestion throughout London during the war. With characteristic ingenuity and craftiness, ostensibly for purposes of peace but with bomb-carrying capacity as a prime specification, the Zeppelin had been developed by the Germans to a point where it seriously threatened both London and Paris. Searchlights, range-finders, and anti-aircraft guns, surpa.s.sed by the daring ventures of British and French airmen, would have served but little against the night invader except for its one fatal defect--the inflammable nature of the hydrogen gas that kept it aloft. A single explosive bullet served to transform a Zeppelin into a heap of scorched and twisted metal. This characteristic of hydrogen caused the failure of the Zeppelin raids.

Had the war lasted a few months longer, however, the work of American scientists would have made our counter-attack in the air a formidable one. At the signing of the armistice hundreds of cylinders of compressed helium lay at the docks ready for s.h.i.+pment abroad. Extracted from the natural gas of Texas wells by new and ingenious processes, this subst.i.tute for hydrogen, almost as light and absolutely uninflammable, produced in quant.i.ties of millions of cubic feet, would have made the dirigibles of the Allies masters of the air. The special properties of this remarkable gas, previously obtainable only in minute quant.i.ties, would have sufficed to reverse the situation.

SOLAR HELIUM

Helium, as its name implies, is of solar origin. In 1868, when Lockyer first directed his spectroscope to the great flames or prominences that rise thousands of miles, sometimes hundreds of thousands, above the surface of the sun, he instantly identified the characteristic red and blue radiations of hydrogen. In the yellow, close to the position of the well-known double line of sodium, but not quite coincident with it, he detected a new line, of great brilliancy, extending to the highest levels. Its similarity in this respect with the lines of hydrogen led him to recognize the existence of a new and very light gas, unknown to terrestrial chemistry.

Many years pa.s.sed before any chemical laboratory on earth was able to match this product of the great laboratory of the sun. In 1896 Ramsay at last succeeded in separating helium, recognized by the same yellow line in its spectrum, in minute quant.i.ties from the mineral uraninite. Once available for study under electrical excitation in vacuum tubes, helium was found to have many other lines in its spectrum, which have been identified in the spectra of solar prominences, gaseous nebulae, and hot stars. Indeed, there is a stellar cla.s.s known as helium stars, because of the dominance of this gas in their atmospheres.

[Ill.u.s.tration: Fig. 30. Solar prominences, photographed with the spectroheliograph without an eclipse (Ellerman).

In these luminous gaseous clouds, which sometimes rise to elevations exceeding half the sun's diameter, the new gas helium was discovered by Lockyer in 1868. Helium was not found on the earth until 1896.

Since then it has been shown to be a prominent const.i.tuent of nebulae and hot stars.]

The chief importance of helium lies in the clue it has afforded to the const.i.tution of matter and the trans.m.u.tation of the elements.

Radium and other radioactive substances, such as uranium, spontaneously emit negatively charged particles of extremely small ma.s.s (electrons), and also positively charged particles of much greater ma.s.s, known as alpha particles. Rutherford and Geiger actually succeeded in counting the number of alpha particles emitted per second by a known ma.s.s of radium, and showed that these were charged helium atoms.

To discuss more at length the extraordinary characteristics of helium, which plays so large a part in celestial affairs, would take us too far afield. Let us therefore pa.s.s to another case in which a fundamental discovery, this time in physics, was first foreshadowed by astronomical observation.

SUN-SPOTS AS MAGNETS

No archaeologist, whether Young or Champollion deciphering the Rosetta Stone, or Rawlinson copying the cuneiform inscription on the cliff of Behistun, was ever faced by a more fascinating problem than that which confronts the solar physicist engaged in the interpretation of the hieroglyphic lines of sun-spot spectra. The colossal whirling storms that const.i.tute sun-spots, so vast that the earth would make but a moment's scant mouthful for them, differ materially from the general light of the sun when examined with the spectroscope.

Observing them visually many years ago, the late Professor Young, of Princeton, found among their complex features a number of double lines which he naturally attributed, in harmony with the physical knowledge of the time, to the effect of "reversal" by superposed layers of vapors of different density and temperature. What he actually saw, however, as was proved at the Mount Wilson Observatory in 1908, was the effect of a powerful magnetic field on radiation, now known as the Zeeman effect.

[Ill.u.s.tration: Fig. 31. The 150-foot tower telescope of the Mount Wilson Observatory.

An image of the sun about 16 inches in diameter is formed in the laboratory at the base of the tower. Below this, in a well extending 80 feet into the earth, is the powerful spectroscope with which the magnetic fields in sun-spots and the general magnetic field of the sun are studied.]

Faraday was the first to detect the influence of magnetism on light.

Between the poles of a large electromagnet, powerful for those days (1845), he placed a block of very dense gla.s.s. The plane of polarization of a beam of light, which pa.s.sed unaffected through the gla.s.s before the switch was closed, was seen to rotate when the magnetic field was produced by the flow of the current. A similar rotation is now familiar in the well-known tests of sugars--laevulose and dextrose--which rotate plane-polarized light to left and right, respectively.

But in this first discovery of a relations.h.i.+p between light and magnetism Faraday had not taken the more important step that he coveted--to determine whether the vibration period of a light-emitting particle is subject to change in a magnetic field. He attempted this in 1862--the last experiment of his life. A sodium flame was placed between the poles of a magnet, and the yellow lines were watched in a spectroscope when the magnet was excited. No change could be detected, and none was found by subsequent investigators until Zeeman, of Leiden, with more powerful instruments made his famous discovery, the twenty-fifth anniversary of which has recently been celebrated.

[Ill.u.s.tration: Fig. 32. Pasadena Laboratory of the Mount Wilson Observatory.

Showing the large magnet (on the left) and the spectroscopes used for the study of the effect of magnetism on radiation. A single line in the spectrum is split by the magnetic field into from three to twenty-one components, as ill.u.s.trated in Fig. 34. The corresponding lines in the spectra of sun-spots are split up in precisely the same way, thus indicating the presence of powerful magnetic fields in the sun.]

His method of procedure was similar to Faraday's, but his magnet and spectroscope were much more powerful, and a theory due to Lorentz, predicting the nature of the change to be expected, was available as a check on his results. When the current was applied the lines were seen to widen. In a still more powerful magnetic field each of them split into two components (when the observation was made along the lines of force), and the light of the components of each line was found to be circularly polarized in opposite directions.

Strictly in harmony with Lorentz's theory, this splitting and polarization proved the presence in the luminous vapor of exactly such negatively charged electrons as had been indicated there previously by very different experimental methods.

In 1908 great cyclonic storms, or vortices, were discovered at the Mount Wilson Observatory centring in sun-spots. Such whirling ma.s.ses of hot vapors, inferred from Sir Joseph Thomson's results to contain electrically charged particles, should give rise to a magnetic field. This hypothesis at once suggested that the double lines observed by Young might really represent the Zeeman effect.

The test was made, and all the characteristic phenomena of radiation in a magnetic field were found.

Thus a great physical experiment is constantly being performed for us in the sun. Every large sunspot contains a magnetic field covering many thousands of square miles, within which the spectrum lines of iron, manganese, chromium, t.i.tanium, vanadium, calcium, and other metallic vapors are so powerfully affected that their widening and splitting can be seen with telescopes and spectroscopes of moderate size.

THE TOWER TELESCOPE

Both of these ill.u.s.trations show how the physicist and chemist, when adequately armed for astronomical attack, can take advantage in their studies of the stupendous processes visible in cosmic crucibles, heated to high temperatures and influenced, as in the case of sun-spots, by intense magnetic fields. Certain modern instruments, like the 60-foot and 150-foot tower telescopes on Mount Wilson, are especially designed for observing the course of these experiments. The second of these telescopes produces at a fixed point in a laboratory an image of the sun about 16 inches in diameter, thus enlarging the sun-spots to such a scale that the magnetic phenomena of their various parts can be separately studied. This a.n.a.lysis is accomplished with a spectroscope 80 feet in length, mounted in a subterranean chamber beneath the tower. The varied results of such investigations cannot be described here.

Only one of them may be mentioned--the discovery that the entire sun, rotating on its axis, is a great magnet. Hence we may reasonably infer that every star, and probably every planet, is also a magnet, as the earth has been known to be since the days of Gilbert's "De Magnete." Here lies one of the best clues for the physicist who seeks the cause of magnetism, and attempts to produce it, as Barnett has recently succeeded in doing, by rapidly whirling ma.s.ses of metal in the laboratory.

[Ill.u.s.tration: Fig. 33. Sun-spot vortex in the upper hydrogen atmosphere. (Benioff).

Photographed with the spectroheliograph. The electric vortex that causes the magnetic field of the spot lies at a lower level, and is not shown by such photographs.]

Perhaps a word of caution should be interpolated at this point.

Solar magnetism in no wise accounts for the sun's gravitational power. Indeed, its attraction cannot be felt by the most delicate instruments at the distance of the earth, and would still be unknown were it not for the influence of magnetism on light.

Auroras, magnetic storms, and such electric currents as those that recently deranged several Atlantic cables are due, not to the magnetism of the sun or its spots, but probably to streams of electrons, shot out from highly disturbed areas of the solar surface surrounding great sun-spots, traversing ninety-three million miles of the ether of s.p.a.ce, and penetrating deep into the earth's atmosphere. These striking phenomena lead us into another chapter of physics, which limitations of s.p.a.ce forbid us to pursue.

STELLAR CHEMISTRY

The New Heavens Part 3

You're reading novel The New Heavens Part 3 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


The New Heavens Part 3 summary

You're reading The New Heavens Part 3. This novel has been translated by Updating. Author: George Ellery Hale already has 626 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com