The Age of Invention Part 2

You’re reading novel The Age of Invention Part 2 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

"The princ.i.p.al object of my present excursion to this Country was to get this business set right; which I have so far effected as to induce the Legislature of this State to recind all their former SUSPENDING LAWS and RESOLUTIONS, to agree once more to pay the sum of 30,000 Dollars which was due and make the necessary appropriations for that purpose. I have as yet however obtained but a small part of this payment. The residue is promised me in July next. Thus you see my RECOMPENSE OF REWARD is as the land of Canaan was to the Jews, resting a long while in promise. If the Nations with whom I have to contend are not as numerous as those opposed to the Israelites, they are certainly much greater HEATHENS, having their hearts hardened and their understanding blinded, to make, propagate and believe all manner of lies. Verily, Stebbins, I have had much vexation of spirit in this business. I shall spend forty thousand dollars to obtain thirty, and it will all end in vanity at last. A contract had been made with the State of Tennessee which now hangs SUSPENDED. Two attempts have been made to induce the State of No.

Carolina to RECIND their CONTRACT, neither of which have succeeded. Thus you see Brother Steb. Sovreign and Independent States warped by INTEREST will be ROGUES and misled by Demagogues will be FOOLS. They have spent much time, MONEY and CREDIT, to avoid giving me a small compensation, for that which to them is worth millions."

Meanwhile North Carolina had agreed to buy the rights for the State on terms that yielded Whitney about thirty thousand dollars, and it is estimated that he received about ten thousand dollars from Tennessee, making his receipts in all about ninety thousand dollars, before deducting costs of litigation and other losses. The cotton gin was not profitable to its inventor. And yet no invention in history ever so suddenly transformed an industry and created enormous wealth. Eight years before Whitney's invention, eight bales of cotton, landed at Liverpool, were seized on the ground that so large a quant.i.ty of cotton could not have been produced in the United States. The year before that invention the United States exported less than one hundred and forty thousand pounds of cotton; the year after it, nearly half a million pounds; the next year over a million and a half; a year later still, over six million; by 1800, nearly eighteen million pounds a year. And by 1845 the United States was producing producing seven-eighths of the world's cotton. Today the United States produces six to eight billion pounds of cotton annually, and ninety-nine per cent of this is the upland or green-seed cotton, which is cleaned on the Whitney type of gin and was first made commercially available by Whitney's invention.*

* Roe, "English and American Tool Builders", pp. 150-51.

More than half of this enormous crop is still exported in spite of the great demand at home. Cotton became and has continued to be the greatest single export of the United States. In ordinary years its value is greater than the combined value of the three next largest exports. It is on cotton that the United States has depended for the payment of its trade balance to Europe.

Other momentous results followed on the invention of the cotton gin. In 1793 slavery seemed a dying inst.i.tution, North and South. Conditions of soil and climate made slavery unprofitable in the North. On many of the indigo, rice, and tobacco plantations in the South there were more slaves than could be profitably employed, and many planters were thinking of emanc.i.p.ating their slaves, when along came this simple but wonderful machine and with it the vision of great riches in cotton; for while slaves could not earn their keep separating the cotton from its seeds by hand, they could earn enormous profits in the fields, once the difficulty of extracting the seeds was solved. Slaves were no longer a liability but an a.s.set. The price of "field hands" rose, and continued to rise. If the worn-out lands of the seaboard no longer afforded opportunity for profitable employment, the rich new lands of the Southwest called for laborers, and yet more laborers. Taking slaves with them, younger sons pushed out into the wilderness, became possessed of great tracts of fertile land, and built up larger plantations than those upon which they had been born. Cotton became King of the South.

The supposed economic necessity of slave labor led great men to defend slavery, and politics in the South became largely the defense of slavery against the aggression, real or fancied, of the free North. The rift between the sections became a chasm. Then came the War of Secession.

Though Miller was dead, Whitney carried on the fight for his rights in Georgia. His difficulties were increased by a patent which the Government at Philadelphia issued in May, 1796, to Hogden Holmes, a mechanic of Augusta, for an improvement in the cotton gin. The Holmes machines were soon in common use, and it was against the users of these that many of the suits for infringement were brought. Suit after suit ran its course in the Georgia courts, without a single decision in the inventor's favor. At length, however, in December, 1806, the validity of Whitney's patent was finally determined by decision of the United States Circuit Court in Georgia. Whitney asked for a perpetual injunction against the Holmes machine, and the court, finding that his invention was basic, granted him all that he asked.

By this time, however, the life of the patent had nearly run its course.

Whitney applied to Congress for a renewal, but, in spite of all his arguments and a favorable committee report, the opposition from the cotton States proved too strong, and his application was denied. Whitney now had other interests. He was a great manufacturer of firearms, at New Haven, and as such we shall meet him again in a later chapter.

CHAPTER III. STEAM IN CAPTIVITY

For the beginnings of the enslavement of steam, that mighty giant whose work has changed the world we live in, we must return to the times of Benjamin Franklin. James Watt, the accredited father of the modern steam engine, was a contemporary of Franklin, and his engine was twenty-one years old when Franklin died. The discovery that steam could be harnessed and made to work is not, of course, credited to James Watt.

The precise origin of that discovery is unknown. The ancient Greeks had steam engines of a sort, and steam engines of another sort were pumping water out of mines in England when James Watt was born. James Watt, however, invented and applied the first effective means by which steam came to serve mankind. And so the modern steam engine begins with him.

The story is old, of how this Scottish boy, James Watt, sat on the hearth in his mother's cottage, intently watching the steam rising from the mouth of the tea kettle, and of the great role which this boy afterwards a.s.sumed in the mechanical world. It was in 1763, when he was twenty-eight and had the appointment of mathematical-instrument maker to the University of Glasgow, that a model of Newcomen's steam pumping engine was brought into his shop for repairs. One can perhaps imagine the feelings with which James Watt, interested from his youth in mechanical and scientific instruments, particularly those which dealt with steam, regarded this Newcomen engine. Now his interest was vastly quickened. He set up the model and operated it, noticed how the alternate heating and cooling of its cylinder wasted power, and concluded, after some weeks of experiment, that, in order to make the engine practicable, the cylinder must be kept hot, "always as hot as the steam which entered it." Yet in order to condense the steam there must be a cooling of the vessel. The problem was to reconcile these two conditions.

At length the pregnant idea occurred to him--the idea of the separate condenser. It came to him on a Sunday afternoon in 1765, as he walked across Glasgow Green. If the steam were condensed in a vessel separate from the cylinder, it would be quite possible to keep the condensing vessel cool and the cylinder hot at the same time. Next morning Watt began to put his scheme to the test and found it practicable. He developed other ideas and applied them. So at last was born a steam engine that would work and multiply man's energies a thousandfold.

After one or two disastrous business experiences, such as fall to the lot of many great inventors, perhaps to test their perseverance, Watt a.s.sociated himself with Matthew Boulton, a man of capital and of enterprise, owner of the Soho Engineering Works, near Birmingham. The firm of Boulton and Watt became famous, and James Watt lived till August 19, 1819--lived to see his steam engine the greatest single factor in the new industrial era that had dawned for English-speaking folk.

Boulton and Watt, however, though they were the pioneers, were by no means alone in the development of the steam engine. Soon there were rivals in the field with new types of engines. One of these was Richard Trevithick in England; another was Oliver Evans of Philadelphia. Both Trevithick and Evans invented the high-pressure engine. Evans appears to have applied the high pressure principle before Trevithick, and it has been said that Trevithick borrowed it from Evans, but Evans himself never said so, and it is more likely that each of these inventors worked it out independently. Watt introduced his steam to the cylinder at only slightly more than atmospheric pressure and clung tenaciously to the low-pressure theory all his life. Boulton and Watt, indeed, aroused by Trevithick's experiments in high-pressure engines, sought to have Parliament pa.s.s an act forbidding high pressure on the ground that the lives of the public were endangered. Watt lived long enough, however, to see the high-pressure steam engine come into general favor, not only in America but even in his own conservative country.

Less sudden, less dramatic, than that of the cotton gin, was the entrance of the steam engine on the American industrial stage, but not less momentous. The actions and reactions of steam in America provide the theme for an Iliad which some American Homer may one day write. They include the epic of the coal in the Pennsylvania hills, the epic of the ore, the epic of the railroad, the epic of the great city; and, in general, the subjugation of a continental wilderness to the service of a vast civilization.

The vital need of better transportation was uppermost in the thoughts of many Americans. It was seen that there could be no national unity in a country so far flung without means of easy intercourse between one group of Americans and another. The highroads of the new country were, for the most part, difficult even for the man on horseback, and worse for those who must travel by coach or post-chaise. Inland from the coast and away from the great rivers there were no roads of any sort; nothing but trails. Highways were essential, not only for the permanent unity of the United States, but to make available the wonderful riches of the inland country, across the Appalachian barrier and around the Great Lakes, into which American pioneers had already made their way.

Those immemorial pathways, the great rivers, were the main avenues of traffic with the interior. So, of course, when men thought of improving transportation, they had in mind chiefly transportation by water; and that is why the earliest efforts of American inventors were applied to the means of improving traffic and travel by water and not by land.

The first men to spend their time in trying to apply steam power to the propulsion of a boat were contemporaries of Benjamin Franklin. Those who worked without Watt's engine could hardly succeed. One of the earliest of these was William Henry of Pennsylvania. Henry, in 1763, had the idea of applying power to paddle wheels, and constructed a boat, but his boat sank, and no result followed, unless it may be that John Fitch and Robert Fulton, both of whom were visitors at Henry's house, received some suggestions from him. James Rumsey of Maryland began experiments as early as 1774 and by 1786 had a boat that made four miles an hour against the current of the Potomac.

The most interesting of these early and unsuccessful inventors is John Fitch, who, was a Connecticut clockmaker living in Philadelphia. He was eccentric and irregular in his habits and quite ignorant of the steam engine. But he conceived the idea of a steamboat and set to work to make one. The record of Fitch's life is something of a tragedy. At the best he was an unhappy man and was always close to poverty. As a young man he had left his family because of unhappy domestic relations with his wife.

One may find in the record of his undertakings which he left in the Philadelphia Library, to be opened thirty years after its receipt, these words: "I know of nothing so perplexing and vexatious to a man of feelings as a turbulent Wife and Steamboat building." But in spite of all his difficulties Fitch produced a steamboat, which plied regularly on the Delaware for several years and carried pa.s.sengers. "We reigned Lord High Admirals of the Delaware; and no other boat in the River could hold its way with us," he wrote. "Thus has been effected by little Johnny Fitch and Harry Voight [one of his a.s.sociates] one of the greatest and most useful arts that has ever been introduced into the world; and although the world and my country does not thank me for it, yet it gives me heartfelt satisfaction." The "Lord High Admirals of the Delaware," however, did not reign long. The steamboat needed improvement to make it pay; its backers lost patience and faith, and the inventor gave up the fight and retired into the fastnesses of the Kentucky wilderness, where he died.

The next inventor to struggle with the problem of the steamboat, with any approach to success, was John Stevens of Hoboken. His life was cast in a vastly different environment from that of John Fitch. He was a rich man, a man of family and of influence. His father's house--afterwards his own---at 7 Broadway, facing Bowling Green--was one of the mansions of early New York, and his own summer residence on Castle Point, Hoboken, just across the Hudson, was one of the landmarks of the great river. For many years John Stevens crossed that river; most often in an open boat propelled by sail or by men at the oars. Being naturally of a mechanical turn, he sought to make the crossing easier. To his library were coming the prints that told of James Watt and the steam engine in England, and John Fitch's boat had interested him.

Robert Fulton's Clermont, of which we shall speak presently, was undoubtedly the pioneer of practicable steamboats. But the Phoenix, built by John Stevens, followed close on the Clermont. And its engines were built in America, while those of the Clermont had been imported from England. Moreover, in June, 1808, the Phoenix stood to sea, and made the first ocean voyage in the history of steam navigation. Because of a monopoly of the Hudson, which the New York Legislature had granted to Livingston and Fulton, Stevens was compelled to send his s.h.i.+p to the Delaware. Hence the trip out into the waters of the Atlantic, a journey that was not undertaken without trepidation. But, despite the fact that a great storm arose, the Phoenix made the trip in safety; and continued for many years thereafter to ply the Delaware between Philadelphia and Trenton.

Robert Fulton, like many and many another great inventor, from Leonardo da Vinci down to the present time, was also an artist. He was born November 14, 1765, at Little Britain, Lancaster County, Pennsylvania, of that stock which is so often miscalled "Scotch-Irish." He was only a child when his father died, leaving behind him a son who seems to have been much more interested in his own ideas than in his schoolbooks. Even in his childhood Robert showed his mechanical ability. There was a firm of noted gunsmiths in Lancaster, in whose shops he made himself at home and became expert in the use of tools. At the age of fourteen he applied his ingenuity to a heavy fis.h.i.+ng boat and equipped it with paddle-wheels, which were turned by a crank, thus greatly lightening the labor of moving it.

At the age of seventeen young Fulton moved to Philadelphia and set up as a portrait painter. Some of the miniatures which he painted at this time are said to be very good. He worked hard, made many good friends, including Benjamin Franklin, and succeeded financially. He determined to go to Europe to study--if possible under his fellow Pennsylvanian, Benjamin West, then rising into fame in London. The West and the Fulton families had been intimate, and Fulton hoped that West would take him as a pupil. First buying a farm for his mother with a part of his savings, he sailed for England in 1786, with forty guineas in his pocket.

West received him not only as a pupil but as a guest in his house and introduced him to many of his friends. Again Fulton succeeded, and in 1791 two of his portraits were exhibited at the Royal Academy, and the Royal Society of British Artists hung four paintings by him.

Then came the commission which changed the course of Fulton's life.

His work had attracted the notice of Viscount Courtenay, later Earl of Devon, and he was invited to Devons.h.i.+re to paint that n.o.bleman's portrait. Here he met Francis, third Duke of Bridgewater, the father of the English ca.n.a.l system, and his hardly less famous engineer, James Brindley, and also Earl Stanhope, a restless, inquiring spirit. Fulton the mechanic presently began to dominate Fulton the artist. He studied ca.n.a.ls, invented a means of sawing marble in the quarries, improved the wheel for spinning flax, invented a machine for making rope, and a method of raising ca.n.a.l boats by inclined planes instead of locks. What money he made from these inventions we do not know, but somewhat later (1796) he speaks hopefully of an improvement in tanning. This same year he published a pamphlet ent.i.tled "A Treatise on the Improvement of Ca.n.a.l Navigation", copies of which were sent to Napoleon and President Was.h.i.+ngton.

Fulton went to France in 1797. To earn money he painted several portraits and a panorama of the Burning of Moscow. This panorama, covering the walls of a circular hall built especially for it, became very popular, and Fulton painted another. In Paris he formed a warm friends.h.i.+p with that singular American, Joel Barlow, soldier, poet, speculator, and diplomatist, and his wife, and for seven years lived in their house.

The long and complicated story of Fulton's sudden interest in torpedoes and submarine boats, his dealings with the Directory and Napoleon and with the British Admiralty does not belong here. His experiments and his negotiations with the two Governments occupied the greater part of his time for the years between 1797 and 1806. His expressed purpose was to make an engine of war so terrible that war would automatically be abolished. The world, however, was not ready for diving boats and torpedoes, nor yet for the end of war, and his efforts had no tangible results.*

* The submarine was the invention of David Bushnell, a Connecticut Yankee, whose "American Turtle" blew up at least one British vessel in the War of Independence and created much consternation among the King's s.h.i.+ps in American waters.

During all the years after 1793, at least, and perhaps earlier, the idea of the steamboat had seldom been out of his mind, but lack of funds and the greater urgency, as he thought, of the submarine prevented him from working seriously upon it. In 1801, however, Robert R. Livingston came to France as American Minister. Livingston had already made some unsuccessful experiments with the steamboat in the United States, and, in 1798, had received the monopoly of steam navigation on the waters of New York for twenty years, provided that he produced a vessel within twelve months able to steam four miles an hour. This grant had, of course, been forfeited, but might be renewed, Livingston thought.

Fulton and Livingston met, probably at Barlow's house, and, in 1802, drew up an agreement to construct a steamboat to ply between New York and Albany. Livingston agreed to advance five hundred dollars for experimentation in Europe. In this same year Fulton built a model and tested different means of propulsion, giving "the preference to a wheel on each side of the model."* The boat was built on the Seine, but proved too frail for the borrowed engine. A second boat was tried in August, 1803, and moved, though at a disappointingly slow rate of speed.

* Fulton to Barlow, quoted in Sutcliffe, "Robert Fulton and the Clermont", p. 124.

Just at this time Fulton wrote ordering an engine from Boulton and Watt to be transported to America. The order was at first refused, as it was then the shortsighted policy of the British Government to maintain a monopoly of mechanical contrivances. Permission to export was given the next year, however, and the engine was s.h.i.+pped in 1805. It lay for some time in the New York Customs House. Meanwhile Fulton had studied the Watt engine on Symington's steamboat, the Charlotte Dundas, on the Forth and Clyde Ca.n.a.l, and Livingston had been granted a renewal of his monopoly of the waters of New York.

Fulton arrived at New York in 1806 and began the construction of the Clermont, so named after Livingston's estate on the Hudson. The building was done on the East River. The boat excited the jeers of pa.s.sersby, who called it "Fulton's Folly." On Monday, August 17, 1807, the memorable first voyage was begun. Carrying a party of invited guests, the Clermont steamed off at one o'clock. Past the towns and villages along the Hudson, the boat moved steadily, black smoke rolling from her stack.

Pine wood was the fuel. During the night, the sparks pouring from her funnel, the clanking of her machinery, and the splas.h.i.+ng of the paddles frightened the animals in the woods and the occupants of the scattered houses along the banks. At one o'clock Tuesday the boat arrived at Clermont, 110 miles from New York. After spending the night at Clermont, the voyage was resumed on Wednesday. Albany, forty miles away, was reached in eight hours, making a record of 150 miles in thirty-two hours. Returning to New York, the distance was covered in thirty hours.

The steamboat was a success.

The boat was then laid up for two weeks while the cabins were boarded in, a roof built over the engine, and coverings placed over the paddle-wheels to catch the spray--all under Fulton's eye. Then the Clermont began regular trips to Albany, carrying sometimes a hundred pa.s.sengers, making the round trip every four days, and continued until floating ice marked the end of navigation for the winter.

Why had Fulton succeeded where others had failed? There was nothing new in his boat. Every essential feature of the Clermont had been antic.i.p.ated by one or other of the numerous experimenters before him.

The answer seems to be that he was a better engineer than any of them.

He had calculated proportions, and his hull and his engine were in relation. Then too, he had one of Watt's engines, undoubtedly the best at the time, and the unwavering support of Robert Livingston.

Fulton's restless mind was never still, but he did not turn capriciously from one idea to another. Though never satisfied, his new ideas were tested scientifically and the results carefully written down. Some of his notebooks read almost like geometrical demonstrations; and his drawings and plans were beautifully executed. Before his death in 1815 he had constructed or planned sixteen or seventeen boats, including boats for the Hudson, Potomac, and Mississippi rivers, for the Neva in Russia, and a steam vessel of war for the United States. He was a member of the commission on the Erie Ca.n.a.l, though he did not live to see that enterprise begun.

The mighty influence of the steamboat in the development of inland America is told elsewhere in this Series.* The steamboat has long since grown to greatness, but it is well to remember that the true ancestor of the magnificent leviathan of our own day is the Clermont of Robert Fulton.

* Archer B. Hulbert, "The Paths of Inland Commerce".

The world today is on the eve of another great development in transportation, quite as revolutionary as any that have preceded. How soon will it take place? How long before Kipling's vision in "The Night Mail" becomes a full reality? How long before the air craft comes to play a great role in the world's transportation? We cannot tell. But, after looking at the nearest parallel in the facts of history, each of us may make his own guess. The airs.h.i.+p appears now to be much farther advanced than the steamboat was for many years after Robert Fulton died.

Already we have seen men ride the wind above the sea from the New World to the Old. Already United States mails are regularly carried through the air from the Atlantic to the Golden Gate. It was twelve years after the birth of Fulton's Clermont, and four years after the inventor's death, before any vessel tried to cross the Atlantic under steam. This was in 1819, when the sailing packet Savannah, equipped with a ninety horsepower horizontal engine and paddle-wheels, crossed from Savannah to Liverpool in twenty-five days, during eighteen of which she used steam power. The following year, however, the engine was taken out of the craft. And it was not until 1833 that a real steams.h.i.+p crossed the Atlantic. This time it was the Royal William, which made a successful pa.s.sage from Quebec to London. Four years more pa.s.sed before the Great Western was launched at Bristol, the first steams.h.i.+p to be especially designed for transatlantic service, and the era of great steam liners began.

If steam could be made to drive a boat on the water, why not a wagon on the land?

History, seeking origins, often has difficulty when it attempts to discover the precise origin of an idea. "It frequently happens,"

said Oliver Evans, "that two persons, reasoning right on a mechanical subject, think alike and invent the same thing without any communication with each other."* It is certain, however, that one of the first, if not the first, protagonist of the locomotive in America was the same Oliver Evans, a truly great inventor for whom the world was not quite ready.

The world has forgotten him. But he was the first engine builder in America, and one of the best of his day. He gave to his countrymen the high-pressure steam engine and new machinery for manufacturing flour that was not superseded for a hundred years.

* Coleman Sellers, "Oliver Evans and His Inventions,"

"Journal of the Franklin Inst.i.tute", July, 1886: vol. CXXII, p. 16.

The Age of Invention Part 2

You're reading novel The Age of Invention Part 2 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


The Age of Invention Part 2 summary

You're reading The Age of Invention Part 2. This novel has been translated by Updating. Author: Holland Thompson already has 751 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com