The Age of Invention Part 3
You’re reading novel The Age of Invention Part 3 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!
"Evans was apprenticed at the age of fourteen to a wheelwright. He was a thoughtful, studious boy, who devoured eagerly the few books to which he had access, even by the light of a fire of shavings, when denied a candle by his parsimonious master. He says that in 1779, when only seventeen years old, he began to contrive some method of propelling land carriages by other means than animal power; and that he thought of a variety of devices, such as using the force of the wind and treadles worked by men; but as they were evidently inadequate, was about to give up the problem as unsolvable for want of a suitable source of power, when he heard that some neighboring blacksmith's boys had stopped up the touch-hole of a gun barrel, put in some water, rammed down a tight wad, and, putting the breech into the smith's fire, the gun had discharged itself with a report like that of gunpowder. This immediately suggested to his fertile mind a new source of power, and he labored long to apply it, but without success, until there fell into his hands a book describing the old atmospheric steam engine of Newcomen, and he was at once struck with the fact that steam was only used to produce a vacuum while to him it seemed clear that the elastic power of the steam if applied directly to moving the piston, would be far more efficient.
He soon satisfied himself that he could make steam wagons, but could convince no one else of this possibility."*
* Coleman Sellers, "Oliver Evans and His Inventions,"
"Journal of the Franklin Inst.i.tute", July, 1886: vol. CXXII, p. 3.
Evans was then living in Delaware, where he was born, and where he later worked out his inventions in flour-milling machinery and invented and put into service the high-pressure steam engine. He appears to have moved to Philadelphia about 1790, the year of Franklin's death and of the Federal Patent Act; and, as we have seen, the third patent issued by the Government at Philadelphia was granted to him. About this time he became absorbed in the hard work of writing a book, the "Millwright and Miller's Guide", which he published in 1795, but at a heavy sacrifice to himself in time and money. A few years later he had an established engine works in Philadelphia and was making steam engines of his own type that performed their work satisfactorily.
The Oruktor Amphibolos, or Amphibious Digger, which came out of his shop in 1804, was a steamdriven machine made to the order of the Philadelphia Board of Health for dredging and cleaning the docks of the city. It was designed, as its name suggests, for service either in water or on sh.o.r.e.
It propelled itself across the city to the river front, puffing and throwing off clouds of steam and making quite a sensation on the streets.
Evans had never forgotten his dream of the "steam wagon." His Oruktor had no sooner begun puffing than he offered to make for the Philadelphia and Lancaster Turnpike Company steamdriven carriages to take the place of their six-horse Conestoga wagons, promising to treble their profits.
But the directors of the road were conservative men and his arguments fell on deaf ears.
In the same year Evans pet.i.tioned Congress for an extension of the patent on his flour-milling machinery, which was about to expire. He had derived little profit from this important invention, as the new machinery made its way very slowly, but every year more and more millers were using it and Evans received royalties from them. He felt sure that Congress would renew his patent, and, with great expectations for the future, he announced a new book in preparation by himself to be called "The Young Engineer's Guide". It was to give the most thorough treatment to the subject of the steam engine, with a profusion of drawings to ill.u.s.trate the text. But Evans reckoned without the millers who were opposing his pet.i.tion. Though they were profiting by his invention, they were unwilling to pay him anything, and they succeeded in having his bill in Congress defeated. It was a hard blow for the struggling author and inventor. His income cut off, he was obliged to reduce the scale of his book "and to omit many of the ill.u.s.trations he had promised."
He wrote the sad story into the name of the book. It came out under the t.i.tle of "The Abortion of the Young Engineer's Guide".
Four years later, when Congress restored and extended his patent, Evans felt that better days were ahead, but, as said already, he was too far ahead of his time to be understood and appreciated. Incredulity, prejudice, and opposition were his portion as long as he lived.
Nevertheless, he went on building good engines and had the satisfaction of seeing them in extensive use. His life came to an end as the result of what to him was the greatest possible tragedy. He was visiting New York City in 1819, when news came to him of the destruction by an incendiary of his beloved shops in Philadelphia. The shock was greater than he could bear. A stroke of apoplexy followed, from which he died.
The following prophecy, written by Oliver Evans and published in 1812, seventeen years before the practical use of the locomotive began, tells us something of the vision of this early American inventor:
"The time will come when people will travel in stages moved by steam engines from one city to another almost as fast as birds fly--fifteen to twenty miles an hour. Pa.s.sing through the air with such velocity--changing the scenes in such rapid succession--will be the most exhilarating, delightful exercise. A carriage will set out from Was.h.i.+ngton in the morning, and the pa.s.sengers will breakfast at Baltimore, dine in Philadelphia, and sup at New York the same day.
"To accomplish this, two sets of railways will be laid so nearly level as not in any place to deviate more than two degrees from a horizontal line, made of wood or iron, on smooth paths of broken stone or gravel, with a rail to guide the carriages so that they may pa.s.s each other in different directions and travel by night as well as by day; and the pa.s.sengers will sleep in these stages as comfortably as they do now in steam stage-boats."*
*Cited by Coleman Sellers, Ibid., p. 13.
Another early advocate of steam carriages and railways was John Stevens, the rich inventor of Hoboken, who figures in the story of the steamboat.
In February, 1812, Stevens addressed to the commissioners appointed by the State of New York to explore a route for the Erie Ca.n.a.l an elaborate memoir calculated to prove that railways would be much more in the public interest than the proposed ca.n.a.l. He wrote at the same time to Robert R. Livingston (who, as well as Robert Fulton, his partner in the steamboat, was one of the commissioners) requesting his influence in favor of railways. Livingston, having committed himself to the steamboat and holding a monopoly of navigation on the waters of New York State, could hardly be expected to give a willing ear to a rival scheme, and no one then seems to have dreamed that both ca.n.a.l and railway would ultimately be needed. Livingston, however, was an enlightened statesman, one of the ablest men of his day. He had played a prominent part in the affairs of the Revolution and in the ratification of the Const.i.tution; had known Franklin and Was.h.i.+ngton and had negotiated with Napoleon the Louisiana Purchase. His reply to Stevens is a good statement of the objections to the railway, as seen at the time, and of the public att.i.tude towards it.
Robert R. Livingston to John Stevens
"Albany, 11th March, 1812.
"I did not, till yesterday, receive yours of the 5th of February; where it has loitered on the road I am at a loss to say. I had before read your very ingenious propositions as to the rail-way communication. I fear, however, on mature reflection, that they will be liable to serious objections, and ultimately more expensive than a ca.n.a.l. They must be double, so as to prevent the danger of two such heavy bodies meeting.
The walls on which they are placed must at least be four feet below the surface, and three above, and must be clamped with iron, and even then, would hardly sustain so heavy a weight as you propose moving at the rate of four miles an hour on wheels. As to wood, it would not last a week; they must be covered with iron, and that too very thick and strong. The means of stopping these heavy carriages without a great shock, and of preventing them from running upon each other (for there would be many on the road at once) would be very difficult. In case of accidental stops, or the necessary stops to take wood and water &c many accidents would happen. The carriage of condensed water would be very troublesome. Upon the whole, I fear the expense would be much greater than that of ca.n.a.ls, without being so convenient."*
* John Stevens, "Doc.u.ments Tending to Prove the Superior Advantages of Rail-Ways and Steam-Carriages over Ca.n.a.l Navigation" (1819). Reprinted in "The Magazine of History with Notes and Queries", Extra Number 54 (1917).
Stevens, of course, could not convince the commissioners. "The Communication from John Stevens, Esq.," was referred to a committee, who reported in March: "That they have considered the said communication with the attention due to a gentleman whose scientific researches and knowledge of mechanical powers ent.i.tle his opinions to great respect, and are sorry not to concur in them."
Stevens, however, kept up the fight. He published all the correspondence, hoping to get aid from Congress for his design, and spread his propaganda far and wide. But the War of 1812 soon absorbed the attention of the country. Then came the Erie Ca.n.a.l, completed in 1825, and the extension into the Northwest of the great c.u.mberland Road.
From St. Louis steamboats churned their way up the Missouri, connecting with the Santa Fe Trail to the Southwest and the Oregon Trail to the far Northwest. Horses, mules, and oxen carried the overland travelers, and none yet dreamed of being carried on the land by steam.
Back East, however, and across the sea in England, there were a few dreamers. Railways of wooden rails, sometimes covered with iron, on which wagons were drawn by horses, were common in Great Britain; some were in use very early in America. And on these railways, or tramways, men were now experimenting with steam, trying to harness it to do the work of horses. In England, Trevithick, Blenkinsop, Ericsson, Stephenson, and others; in America, John Stevens, now an old man but persistent in his plans as ever and with able sons to help him, had erected a circular railway at Hoboken as early as 1826, on which he ran a locomotive at the rate of twelve miles an hour. Then in 1828 Horatio Allen, of the Delaware and Hudson Ca.n.a.l Company, went over to England and brought back with him the Stourbridge Lion. This locomotive, though it was not a success in practice, appears to have been the first to turn a wheel on a regular railway within the United States. It was a seven days' wonder in New York when it arrived in May, 1829. Then Allen s.h.i.+pped it to Honesdale, Pennsylvania, where the Delaware and Hudson Ca.n.a.l Company had a tramway to bring down coal from the mountains to the terminal of the ca.n.a.l. On the crude wooden rails of this tramway Allen placed the Stourbridge Lion and ran it successfully at the rate of ten miles an hour. But in actual service the Stourbridge Lion failed and was soon dismantled.
Pa.s.s now to Rainhill, England, and witness the birth of the modern locomotive, after all these years of labor. In the same year of 1829, on the morning of the 6th of October, a great crowd had a.s.sembled to see an extraordinary race--a race, in fact, without any parallel or precedent whatsoever. There were four entries but one dropped out, leaving three: The Novelty, John Braithwaite and John Ericsson; The Sanspareil, Timothy Hackworth; The Rocket, George and Robert Stephenson. These were not horses; they were locomotives. The directors of the London and Manchester Railway had offered a prize of five hundred pounds for the best locomotive, and here they were to try the issue.
The contest resulted in the triumph of Stephenson's Rocket. The others fell early out of the race. The Rocket alone met all the requirements and won the prize. So it happened that George Stephenson came into fame and has ever since lived in popular memory as the father of the locomotive. There was nothing new in his Rocket, except his own workmans.h.i.+p. Like Robert Fulton, he appears to have succeeded where others failed because he was a sounder engineer, or a better combiner of sound principles into a working, whole, than any of his rivals.
Across the Atlantic came the news of Stephenson's remarkable success.
And by this time railroads were beginning in various parts of the United States: the Mohawk and Hudson, from Albany to Schenectady; the Baltimore and Ohio; the Charleston and Hamburg in South Carolina; the Camden and Amboy, across New Jersey. Horses, mules, and even sails, furnished the power for these early railroads. It can be imagined with what interest the owners of these roads heard that at last a practicable locomotive was running in England.
This news stimulated the directors of the Baltimore and Ohio to try the locomotive. They had not far to go for an experiment, for Peter Cooper, proprietor of the Canton Iron Works in Baltimore, had already designed a small locomotive, the Tom Thumb. This was placed on trial in August, 1830, and is supposed to have been the first American-built locomotive to do work on rails, though nearly coincident with it was the Best Friend of Charleston, built by the West Point Foundry, New York, for the Charleston and Hamburg Railroad. It is often difficult, as we have seen, to say which of two or several things was first. It appears as though the little Tom Thumb was the first engine built in America, which actually pulled weight on a regular railway, while the much larger Best Friend was the first to haul cars in regular daily service.
The West Point Foundry followed its first success with the West Point, which also went into service on the Charleston and Hamburg Railroad, and then built for the newly finished Mohawk and Hudson (the first link in the New York Central Lines) the historic De Witt Clinton. This primitive locomotive and the cars it drew may be seen today in the Grand Central Station in New York.
Meanwhile, the Stevens brothers, sons of John Stevens, were engaged in the construction of the Camden and Amboy Railroad. The first locomotive to operate on this road was built in England by George Stephenson. This was the John Bull, which arrived in the summer of 1831 and at once went to work. The John Bull was a complete success and had a distinguished career. Sixty-two years old, in 1893, it went to Chicago, to the Columbian Exposition, under its own steam. The John Bull occupies a place today in the National Museum at Was.h.i.+ngton.
With the locomotive definitely accepted, men began to turn their minds towards its improvement and development, and locomotive building soon became a leading industry in America. At first the British types and patterns were followed, but it was not long before American designers began to depart from the British models and to evolve a distinctively American type. In the development of this type great names have been written into the industrial history of America, among which the name of Matthias Baldwin of Philadelphia probably ranks first. But there have been hundreds of great workers in this field. From Stephenson's Rocket and the little Tom Thumb of Peter Cooper, to the powerful "Mallets"
of today, is a long distance--not spanned in ninety years save by the genius and restless toil of countless brains and hands.
If the locomotive could not remain as it was left by Stephenson and Cooper, neither could the stationary steam engine remain as it was left by James Watt and Oliver Evans. Demands increasing and again increasing, year after year, forced the steam engine to grow in order to meet its responsibilities. There were men living in Philadelphia in 1876, who had known Oliver Evans personally; at least one old man at the Centennial Exhibition had himself seen the Oruktor Amphibolos and recalled the consternation it had caused on the streets of the city in 1804. It seemed a far cry back to the Oruktor from the great and beautiful engine, designed by George Henry Corliss, which was then moving all the vast machinery of the Centennial Exhibition. But since then achievements in steam have dwarfed even the great work of Corliss. And to do a kind of herculean task that was hardly dreamed of in 1876 another type of engine has made its entrance: the steam turbine, which sends its awful energy, transformed into electric current, to light a million lamps or to turn ten thousand wheels on distant streets and highways.
CHAPTER IV. SPINDLE, LOOM, AND NEEDLE IN NEW ENGLAND
The major steps in the manufacture of clothes are four: first to harvest and clean the fiber or wool; second, to card it and spin it into threads; third, to weave the threads into cloth; and, finally to fas.h.i.+on and sew the cloth into clothes. We have already seen the influence of Eli Whitney's cotton gin on the first process, and the series of inventions for spinning and weaving, which so profoundly changed the textile industry in Great Britain, has been mentioned. It will be the business of this chapter to tell how spinning and weaving machinery was introduced into the United States and how a Yankee inventor laid the keystone of the arch of clothing machinery by his invention of the sewing machine.
Great Britain was determined to keep to herself the industrial secrets she had gained. According to the economic beliefs of the eighteenth century, which gave place but slowly to the doctrines of Adam Smith, monopoly rather than cheap production was the road to success. The laws therefore forbade the export of English machinery or drawings and specifications by which machines might be constructed in other countries. Some men saw a vast prosperity for Great Britain, if only the mystery might be preserved.
Meanwhile the stories of what these machines could do excited envy in other countries, where men desired to share in the industrial gains.
And, even before Eli Whitney's cotton gin came to provide an abundant supply of raw material, some Americans were struggling to improve the old hand loom, found in every house, and to make some sort of a spinning machine to replace the spinning wheel by which one thread at a time was laboriously spun.
East Bridgewater, Ma.s.sachusetts, was the scene of one of the earliest of these experiments. There in 1786 two Scotchmen, who claimed to understand Arkwright's mechanism, were employed to make spinning machines, and about the same time another attempt was made at Beverly.
In both instances the experiments were encouraged by the State and a.s.sisted with grants of money. The machines, operated by horse power, were crude, and the product was irregular and unsatisfactory. Then three men at Providence, Rhode Island, using drawings of the Beverly machinery, made machines having thirty-two spindles which worked indifferently. The attempt to run them by water power failed, and they were sold to Moses Brown of Pawtucket, who with his partner, William Almy, had mustered an army of hand-loom weavers in 1790, large enough to produce nearly eight thousand yards of cloth in that year. Brown's need of spinning machinery, to provide his weavers with yarn, was very great; but these machines he had bought would not run, and in 1790 there was not a single successful power-spinner in the United States.
Meanwhile Benjamin Franklin had come home, and the Pennsylvania Society for the Encouragement of Manufactures and Useful Arts was offering prizes for inventions to improve the textile industry. And in Milford, England, was a young man named Samuel Slater, who, on hearing that inventive genius was munificently rewarded in America, decided to migrate to that country. Slater at the age of fourteen had been apprenticed to Jedediah Strutt, a partner of Arkwright. He had served both in the counting-house and the mill and had had every opportunity to learn the whole business.
Soon after attaining his majority, he landed in New York, November, 1789, and found employment. From New York he wrote to Moses Brown of Pawtucket, offering his services, and that old Quaker, though not giving him much encouragement, invited him to Pawtucket to see whether he could run the spindles which Brown had bought from the men of Providence. "If thou canst do what thou sayest," wrote Brown, "I invite thee to come to Rhode Island."
Arriving in Pawtucket in January, 1790, Slater p.r.o.nounced the machines worthless, but convinced Almy and Brown that he knew his business, and they took him into partners.h.i.+p. He had no drawings or models of the English machinery, except such as were in his head, but he proceeded to build machines, doing much of the work himself. On December 20, 1790, he had ready carding, drawing, and roving machines and seventy-two spindles in two frames. The water-wheel of an old fulling mill furnished the power--and the machinery ran.
Here then was the birth of the spinning industry in the United States.
The "Old Factory," as it was to be called for nearly a hundred years, was built at Pawtucket in 1793. Five years later Slater and others built a second mill, and in 1806, after Slater had brought out his brother to share his prosperity, he built another. Workmen came to work for him solely to learn his machines, and then left him to set up for themselves. The knowledge he had brought soon became widespread. Mills were built not only in New England but in other States. In 1809 there were sixty-two spinning mills in operation in the country, with thirty-one thousand spindles; twenty-five more mills were building or projected, and the industry was firmly established in the United States.
The yarn was sold to housewives for domestic use or else to professional weavers who made cloth for sale. This practice was continued for years, not only in New England, but also in those other parts of the country where spinning machinery had been introduced.
By 1810, however, commerce and the fisheries had produced considerable fluid capital in New England which was seeking profitable employment, especially as the Napoleonic Wars interfered with American s.h.i.+pping; and since Whitney's gins in the South were now piling up mountains of raw cotton, and Slater's machines in New England were making this cotton into yarn, it was inevitable that the next step should be the power loom, to convert the yarn into cloth. So Francis Cabot Lowell, scion of the New England family of that name, an importing merchant of Boston, conceived the idea of establis.h.i.+ng weaving mills in Ma.s.sachusetts. On a visit to Great Britain in 1811, Lowell met at Edinburgh Nathan Appleton, a fellow merchant of Boston, to whom he disclosed his plans and announced his intention of going to Manchester to gain all possible information concerning the new industry. Two years afterwards, according to Appleton's account, Lowell and his brother-in-law, Patrick T.
Jackson, conferred with Appleton at the Stock Exchange in Boston.
They had decided, they said, to set up a cotton factory at Waltham and invited Appleton to join them in the adventure, to which he readily consented. Lowell had not been able to obtain either drawings or model in Great Britain, but he had nevertheless designed a loom and had completed a model which seemed to work.
The Age of Invention Part 3
You're reading novel The Age of Invention Part 3 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.
The Age of Invention Part 3 summary
You're reading The Age of Invention Part 3. This novel has been translated by Updating. Author: Holland Thompson already has 764 views.
It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.
LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com
- Related chapter:
- The Age of Invention Part 2
- The Age of Invention Part 4