Modern Geography Part 1

You’re reading novel Modern Geography Part 1 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

Modern Geography.

by Marion I. Newbigin.

CHAPTER I

THE BEGINNINGS OF MODERN GEOGRAPHY

In the year 1859 there occurred three events which, though not all comparable to one another, yet make the year one of such importance that we may take it as marking the beginning of the distinctively modern period of geographical science. These three events were, first, the deaths of Humboldt and Ritter, two great geographical pioneers who hewed tracks through the tangled jungle of unsystematised geographical facts, and second, the publication of the _Origin of Species_, by Charles Darwin, a book which supplied the compa.s.s which has made further road-making in that same jungle possible. In other words, as a result of the life-work of the two great geographers named, and of the throwing by Charles Darwin of a new ferment into the ma.s.s of contemporary thought, what had been a mere collection of facts began to be a reasoned and ordered science. Both Humboldt and Ritter lived to a great age, so that at the time of their deaths not only was their work done, but there had been time also for their influence to permeate the literature of the subject.

Humboldt was, above all, a great traveller, but he was also a man of science in the largest sense, interested not in one group of facts, but in many. The extent of his knowledge and the breadth of his interests enabled him to observe a vast number of phenomena while his particular genius was manifest in the way in which he correlated these, and considered them in their relation to each other. Though it is true that his influence was most direct in the case of natural history, yet in this respect also he pointed to the future, for the geographers of to-day are indebted to the naturalists for some of their finest generalisations.

Ritter was a great teacher, the prototype of those who alike by their personal influence and by their books have enriched geographical science within the last fifty years. He had not Humboldt's breadth of knowledge and interest, but in the stress which he laid upon the earth as above all interesting in that it is the field of the activity of man, he emphasised an aspect of the subject in which perhaps the most interesting modern developments have taken place.

Darwin had a twofold effect upon the progress of geography. In the first place, in his detailed work, _e. g._ in connection with coral reefs, and with the distribution of animals, and less directly in his investigation of the part played by earthworms in the formation of soil, he himself added to geographical knowledge. But he did much more than this. The doctrine of evolution which he made common property has had and is having an enormous effect upon geographical science, both directly and indirectly.

As is well known, in connection with his own theory of the cause of evolution, Darwin laid great stress upon the "Struggle for Existence."

But he himself expressly stated that he used the term in a "large and metaphorical sense," a sense which in popular language it has tended to lose. From the geographer's standpoint, therefore, it is better to say that Darwin's work has added a new interest to the study of interrelations. Humboldt, as we have indicated, was greatly interested in such subjects as the connection between the climate of a region and the vegetation, between the activities of man in a particular region and the physical conditions, and so on. But Darwin added a new interest to such studies. For example, it is a curious fact that desert plants have often spiny leaves, long roots, and so forth, and it is interesting to note how these peculiarities fit the plants for life in an arid climate.

But when Darwin showed that there was evidence that the physical conditions of the desert gave rise to certain types of vegetation, it became worth while to study both the physical conditions and the characters of the plants in much greater detail than before.

If we simply lay it down as an axiom that, _e. g._ cactuses live in deserts, the fact has only a moderate interest, but when we find that almost any natural group of plants, if exposed through long ages to gradually increasing conditions of drought, will produce "cactus" types, then the whole subject acquires new importance. This ill.u.s.tration may serve to suggest what Darwin has done for geography.

He showed that there is a delicately adjusted balance between organisms and their surroundings, taken in their widest sense. But geology proves that through the ages there have been constant, if slight, changes in the physical conditions, and the effort of the organisms to readjust the balance thus disturbed has led to evolution. Thus to some extent at least the characters of organisms can be explained by the nature of their surroundings. A further interest is added by the fact that in this respect human societies and settlements can be shown to behave like organisms. Therefore we can hope to explain at least partially the manifold differences in man and his societies in different parts of the globe by the minor differences in physical conditions. In other words, the doctrine of evolution has added a unifying and co-ordinating principle which has not only prevented geography from being crushed by the enormous recent increase in known facts, but has also for the first time raised it to the level of a science.

This addition of a co-ordinating principle may be said to be the direct effect of the publication of the _Origin of Species_, but there has been an indirect effect almost as important. The principles enunciated in that book had a stimulating effect, not upon one science only but upon every department of thought. Phenomena of no importance suddenly became interesting, and the result of this interest was an enormous addition to known facts. Not only has research been stimulated in every direction, but as this research has been largely directed by the desire to discover the interrelation of phenomena, we find that many of the old barriers between the sciences are breaking down.

The botanists are no longer content to study the facts of plant distribution; they now want to be able to give reasons for particular distributions. Therefore they must seek the aid of the meteorologists to explain differences of climate; of the physical geographer to make clear the effects of relief, of differences of soil, and of drainage; of the cartographer to represent the facts which emerge from their surveys, and so on. The physician must now seek the a.s.sistance of the zoologist before he can deal adequately with tropical disease, and the zoologist must have the help of the physical geographer before he can give adequate aid. The result is that in all directions geography is being enriched by facts brought from the collateral sciences, while at the same time its position as a central unifying science is becoming more and more established; as a science which can deal with all these varied facts, but deal with them from a standpoint peculiarly its own.

At the present time, geography may be compared to one of Rodin's statues in which we see a beautiful figure as it were struggling to escape from the marble in which it is imprisoned. So the geography of to-day is in the act of escaping from the matrix of mere facts in which it has been too long imprisoned. It is now displaying itself as a great unity in the making of which all the sciences have played their part.

But even in this general survey of recent developments two other sets of facts must be touched upon. We have given fifty years as the period within which most of what is distinctively modern in geography has developed. It must not be forgotten that within the same period there has been a remarkable renewal of interest in geographical exploration.

Roughly speaking, within this period Africa has ceased to be an unknown continent; the innermost recesses of Asia have been largely explored; the Arctic and Antarctic areas have yielded many, though by no means the whole, of their secrets; a great deal of exploration has been done in America as a whole, as well as much detailed survey work in the United States and Canada; the oceans have been investigated by successive series of expeditions. Generally it may be said that in its broad outlines our knowledge of the world has been completed, so that geographical science is free to pa.s.s from the mere collection of raw material to the higher task of arranging, cla.s.sifying, and making deductions, as well as to the more detailed surveys which are still necessary.

The other point of interest is that the last fifty years have seen an enormous increase in the facilities for travel, a fact which has led to a great increase in the number of people to whom geography appeals. The decade between 1830 and 1840 saw the beginning of two great series of guide-books, Murray's _Handbooks_ and Baedeker's _Guides_, whose importance for the travelling public can hardly be over-estimated. The first "Baedeker" was a little guide to the Rhine, and since it was first published this firm of publishers has not only extended its field of operations over nearly the whole world, but has issued a constant stream of new editions, which for the most frequented tourist regions are practically annual. That great tourist agency whose name is now a household word began operations in the early forties, and like the firm of Baedeker has now taken the world as its sphere of action. We may say, then, that during the course of the nineteenth century, travel, previously a pastime of the rich, was brought within the reach of very moderate purses. This democratisation of travel is still going on, and in certain recent visits of British working men to Germany and elsewhere we may perhaps see the beginning of a process which will eventually bring some amount of journeying abroad within the reach of all.

As yet the effect upon geography of this increase in travelling has been chiefly to enhance popular interest in the science, rather than to enrich it, for the vast majority of "popular" travel books have added little, if anything, to the sum total of knowledge. But this is partly because geographical teaching has. .h.i.therto been badly organised, and the greater number of travellers have started on their journeys without having been taught what to observe or how to observe. There are already indications that this condition of affairs is pa.s.sing away, and that the traveller of the future will start better equipped, and will demand in his guide-books a new point of view. Starting from a higher level he will bring back more from his travels.

Meantime it should be noted that some knowledge of the generalisations laid down by geographers during the course of the last half century adds enormously to the interest of travel, both at home and abroad, and that for this reason, if for no other, geography is worth study by all.

In the following chapters we shall look, so far as possible, at those aspects of the subject which make the widest appeal, and which are best fitted to enable the ordinary man to understand his surroundings, whatever they may be, and so aid him in that delicate task of adjustment which, consciously or unconsciously, is the task of every living thing.

As limitations of s.p.a.ce involve a similar limitation of subject-matter, it has been thought best to lay most stress upon the conditions which prevail in Europe and North America, the areas which have been most thoroughly studied. Europe has the special interest that it has given origin to the type of civilisation which has most profoundly modified the earth's surface. This limitation cannot, however, be made rigid, for it is of the essence of the modern standpoint that no area can be understood without reference to the world at large. The geography of Europe no less than of North America is determined by the position of the respective continents on the surface of the globe, and cannot be understood without a consideration of this position and its implications. The standpoint adopted here is frankly anthropological, that is, the world is considered as the home of man, its physical peculiarities being regarded as interesting chiefly in their relation to man and his activities.

Finally, we may note that the development of the subject within recent years has been such that it is quite impossible, even within the limitations already laid down, to give a complete survey of the subject.

All that will be attempted, therefore, is to suggest some of the lines along which research is proceeding most actively at the present time, special stress being laid upon those aspects of the subject which are not as yet fully treated in the smaller text-books. The list of books of reference at the end will, it is hoped, enable those interested to fill in the blanks which such a scheme necessarily leaves.

CHAPTER II

SURFACE-RELIEF AND THE PROCESS OF EROSION

It is not necessary here to consider the various formal definitions of geography which have been proposed in the last few years. As is only natural with a developing subject, much discussion has taken place as to the exact limits of its field of action, and many definitions have been proposed with the object of setting forth these limits as clearly as possible. But it is sufficient for our purpose to note that geography deals with the surface-relief of the earth, and with the influence which that relief exercises upon the distribution of other phenomena, and especially upon the life of man. Before we proceed to study detailed problems, then, it is obviously necessary to look at some general points connected with the relief of the earth's surface and its causes.

In the words of the physical geographer, the earth's surface consists of the solid crust, or lithosphere, of the ma.s.s of water forming the seas and oceans and const.i.tuting the hydrosphere, and of that envelope of gas which we call the atmosphere. Considered separately, each of these is the concern of special sciences, and not of the geographer proper. His business it is to take the facts furnished by the meteorologists, the physicists, the geologists, and so forth, and with these facts in hand to proceed to consider the effect of the interaction of earth and water and air in a way which the separate sciences cannot do. We must further note that it is the interactions of these three which make the earth a possible home for life as we know it, and it is these interactions therefore which influence the distribution of life on the surface of the globe.

There may have been a period when the crust of the earth was clothed in a uniform sheet of water, just as the globe is now enveloped in a complete covering of air, but at present, as through the long ages of geological time, the lithosphere consists of elevations and hollows, and it is in the hollows that the water acc.u.mulates, so that we can distinguish between the dry land and the ocean beds. Both chemically and physically the fluid hydrosphere differs markedly from the solid lithosphere, and it is, above all, the physical differences which are of supreme importance to the geographer. Because of them sea and land respond differently to the stream of solar energy which pours down upon our globe, and it is this different response which is the predominating factor in the production of the different climates, which again determine in its main outlines the distribution of living organisms.

This being so, it is clear that it is of great importance to the geographer to know exactly the distribution of land and water over the surface of the earth. As the North Polar regions are still inadequately known, and the South Polar regions hardly known at all, we cannot as yet determine exactly this distribution, but any globe will show that land and ocean are very unequally distributed. The great land ma.s.ses cl.u.s.ter round the North Pole, while the southern hemisphere consists largely of water. We thus have a land hemisphere and a water one. According to recent calculations the oceans occupy some 72 per cent. of the entire surface of the globe, leaving only 28 per cent. of land. But while in the northern hemisphere there is about one and a half times more water than land, in the southern there is about six times more water, both figures being liable to error, as indicated above, owing to our uncertainty as to the land and water of the Polar zones.

This distribution is of great importance in connection with certain theories as to the actual plan of the earth, but this is a difficult subject which need not concern us here. It is discussed in Prof. J. W.

Gregory's volume on _The Making of the Earth_. More interesting is the effect which the arrangement of land and water has had upon that part of the life of the earth which was evolved in late geological time. Though the geographer for convenience' sake recognizes three separate continents in the Old World--Europe, Asia and Africa--yet these form practically one land ma.s.s, which in its turn approaches America very nearly at Bering Straits, and, less nearly, in the North Atlantic through the intervention of the British Isles, the Faeroes, Iceland, Greenland, etc. The centre of this land ma.s.s lies in Europe, a point not without its importance.

In this great land ma.s.s of the northern hemisphere life has reached its highest degree of development, both as regards animal form and as regards human societies. It was in the northern hemisphere that the highest mammals, the placentals, arose. There are many remarkable resemblances between the faunas of Europe, of Asia and of Africa, and a similar, if less marked, resemblance between those of North America on the one hand and of Europe and temperate Asia on the other. On the other hand, the two great land ma.s.ses which occur in the southern hemisphere, South America and Australia, show very marked differences in their fauna, both from each other and from the northern land ma.s.ses, and in both cases the fauna has a primitive aspect, which is best marked in Australia.

When we come to consider man, somewhat similar conditions present themselves. The great civilisations developed in the land ma.s.s of the Old World, though the waterless desert of the Sahara cut off much of Africa from partic.i.p.ation in them. America developed a relatively high civilisation of its own, but as the icefields and ice-pack of the north formed a greater barrier to the migrations of man than to those of the northern animals, this American civilisation was for long cut off from that of the Old World, and when free communication became possible, it went down before that of the eastern world.

We must connect these facts directly with the peculiar distribution of land and water in the northern hemisphere, which made free intercourse possible, alike for the land animals and for man. The importance of this intercourse may be suggested in a few words. When a group of organisms is limited, from whatever cause, to a particular zone of the earth's surface, the members of the group tend to acquire characters fitting them for this restricted area. But if the area is open, constantly or periodically, to incursions of organisms from adjacent areas, then, with the widening of the environment, and the greater intensity of the struggle for existence, evolution is quickened and new characters appear. The men of the Eurasian continent learnt, on the fierce battle-grounds of that continent, lessons which enabled them to conquer without difficulty the more isolated human groups of the southern hemisphere. The fact that they took south with them the mammals of the north, who also have thriven at the expense of the native forms, shows that the hold of the southern animals upon their habitat was no less precarious than that of man himself.

One other point is worth notice in connection with the distribution of land and water over the surface of the globe. We have seen that the northern hemisphere is the region where organic evolution has been most marked. It is, as it were, a great biological laboratory. On the other hand, in the southern hemisphere, which has fewer land ma.s.ses to interfere with the circulation of the atmosphere, many physical phenomena occur in a more marked and orderly fas.h.i.+on than to the north.

The westerly winds of the south blow with a force and a constancy which makes it impossible to compare them with the more variable westerlies of the north. Even the ocean currents of the south seem to show more constancy than those of the north. If the northern hemisphere is a great biological laboratory, the southern may be described as a physical one, and one of the great interests of the further exploration of the Antarctic is that it will probably cast light upon some important meteorological problems. (See Dr. W. S. Bruce's volume on _Polar Exploration_.)

The distribution of land and water, with all its effects on climate and on the distribution of life, is, as we have seen, caused by the main features of the relief of the earth, by the existence of vast depressions in which the water acc.u.mulates, and of relative elevations from which it flows. But the minor details of relief, hill and valley, ocean depth and continental shelf, are also important, and exercise a very marked effect upon distribution. They therefore demand in their turn some consideration.

Taking first the prime distinction between land surface and ocean floor, we note that the two differ from one another markedly, alike in their characteristics and in the conditions to which they are exposed. The land is subjected to constantly varying conditions: to the alternation of day and night, and to the changes of the seasons, with corresponding variations in temperature; to the fluctuations of the weather; to running water, and so forth. In the great ocean depths at least, on the other hand, the conditions are remarkably uniform. Neither diurnal nor seasonal changes have here any effect; the temperature seems to fluctuate but little; the water is almost still. This uniformity of physical conditions is reflected in the uniformity of the surface over wide areas. While the land surface shows marked irregularities, the ocean floor has a monotonous character, with more gentle outlines.

In its most general form the characters of the sea bottom may be briefly stated. Round the great land ma.s.ses there is an area of relatively shallow water, which is sometimes only a few miles wide, and at other times extends outwards for hundreds of miles. This region is the _Continental Shelf_, and its seaward boundary for convenience' sake is taken at a depth of 100 fathoms, or 600 feet. Within this zone the influence of the land is still felt, and some of the characters of land surfaces appear. Thus we sometimes find that river valleys are prolonged outwards over the Continental Shelf, giving a markedly irregular appearance to the ocean floor. The British Islands lie upon a Continental Shelf of this kind, and this is one of our reasons for knowing that they are really only a part of the continent of Europe, separated from it by a slight depression.

The Continental Shelf slopes away from the land gently, and is widest where it fringes low continents, and narrowest where mountains approach the coast. Over it is spread the waste of the land, the coa.r.s.er lying near the sh.o.r.e-line, the finer extending outwards to the steep seaward slope. This rapid slope leads down to the more or less uniform ocean plateau, whose surface is broken by the great ocean abysses, the greatest of which has a depth of about six miles. Relative but not absolute uniformity thus characterises all that part of the ocean floor which lies below about 100 fathoms.

Again, though the ocean floor is doubtless being slowly raised by the deposition upon it of the oceanic oozes, yet it is also true that as compared with the land surface it displays great constancy. While the land surface is constantly changing owing to the varying forces which act upon it, the floor of the ocean can vary but little from age to age, unless it is acted upon by the internal forces of the earth.

Turn now to the land. We note at once the two characters of marked irregularity of surface, and of changeableness. The changeableness is due to the forces of erosion which act upon the surface, and of these forces the most important to the geographer is running water. It is running water, aided by other agents, which carves the land into hill and valley, which produces gorge and lake, only ultimately to fill up the lake and plane away the gorge. It is running water which spreads out on the lower ground the waste of the higher, and thus prepares the way for the operations of man.

The result of the long-continued action of the varied forces of erosion must necessarily be to reduce the surface to an almost level condition.

The denuding agents first produce irregularities and then finally remove these, until the whole surface is once again almost level. The whole globe would thus be reduced to the condition of a plain were it not for the intervention of the internal forces which raise up the surface anew into folds, or which produce volcanoes and outbursts of molten rock.

This constantly repeated series of changes may be said to be chiefly the concern of the geologist, especially as it is a series which has repeated itself in all time. But it is to be noted that at various parts of the surface of the globe at the present time every stage in the process occurs, and everywhere the question whether a particular land area has been exposed for a relatively long or for a relatively short period to the forces of erosion, has a profound influence upon life. It is therefore important for the geographer to be able to recognise the different stages. This he cannot hope to do without some detailed knowledge of the effects of erosion.

Theoretically every land surface elevated above sea-level should pa.s.s through what has been called a cycle of erosion. There should be a period when the active forces are working upon a surface as yet but little modified; this is the period called by a.n.a.logy youth. At a later stage the drainage has been well established, and the rivers run in broad valleys, from which lakes and waterfalls have largely disappeared.

To this condition the term mature has been applied. At a still later stage the land surface has been so worn by the eroding forces that the whole process of erosion is slackened, and an uplift must occur before the erosive forces regain their lost strength. This is the so-called "cycle of normal erosion," but it is constantly liable to variations due to local crust movements, to changes in climate, and to local conditions, though at the same time the distinction of the various stages has value for the geographer because of their varying effects upon human life. It is necessary for us, therefore, to consider how the different stages may be recognized, and how the forces of erosion act.

Let us begin our study of erosion by a general survey of the striking features of the earth's surface at the present day. We know that at various parts of the surface there rise lofty mountain chains, whose summits are often permanently snow-clad, and which, from the sharpness of their forms and from the ma.s.ses of rock rubbish which are acc.u.mulating round them, have obviously only been exposed for a geologically short period to the action of the atmosphere and of running water. When examined such mountain chains are all found to have the same peculiarities of internal form, the rocks composing them being elaborately folded and fractured. Careful investigation has convinced geologists that all the existing great chains owe their origin to a series of earth movements which occurred in the period called Tertiary, that is, in the third of the great geological periods, the one immediately preceding that in which we live.

These lofty mountain chains of Tertiary origin are most familiar in the great series of folds which appear at the surface to form the Pyrenees, the Alps, the Caucasus and the Himalayas, but the Atlas Mountains belong to the same series, as does also that great mountain chain which, under various names, runs down the western coast of the American continent.

[Ill.u.s.tration: Fig. 1.--The main points in regard to the structure of Europe. The shaded areas (1) are regions of ancient rocks, much folded and crumpled, which once formed mountain regions but are now mostly worn down to uplands. The lines (2) show the regions affected by Tertiary folding, largely occupied by mountain chains. The unshaded areas are mostly plains and basins, only slightly affected by folding, and made up of rocks which are often almost horizontal.]

Modern Geography Part 1

You're reading novel Modern Geography Part 1 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


Modern Geography Part 1 summary

You're reading Modern Geography Part 1. This novel has been translated by Updating. Author: Marion I. Newbigin already has 780 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com