Aviation Engines Part 17

You’re reading novel Aviation Engines Part 17 online at LightNovelFree.com. Please use the follow button to get notification about the latest chapter next time when you visit LightNovelFree.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy!

The valve installation shown at C is somewhat unusual, though it provides for the use of valves of large diameter. Easy charging is insured because of the large inlet valve directly in the top of the cylinder. Conditions may be reversed if necessary, and the gases discharged through this large valve. Both methods are used, though it would seem that the free exhaust provided by allowing the gases to escape directly from the combustion chamber through the overhead valve to the exhaust manifold would make for more power. The method outlined at Fig. 92, F and at Fig. 90 is one that has been widely employed on large automobile racing motors where extreme power is required, as well as in engines constructed for aviation service. The inclination of the valves permits the use of large valves, and these open directly into the combustion chamber. There are no pockets to retain heat or dead gas, and free intake and outlet of gas is obtained. This form is quite satisfactory from a theoretical point of view because of the almost ideal combustion chamber form. Some difficulty is experienced, however, in properly water-jacketing the valve chamber which experience has shown to be necessary if the engine is to have high power.

The motor shown at Fig. 92, B and Fig. 88 employs cylinders of the "L"

type. Both valves are placed in a common extension from the combustion chamber, and being located side by side both are actuated from a common cam-shaft. The inlet and exhaust pipes may be placed on the same side of the engine and a very compact a.s.semblage is obtained, though this is optional if pa.s.sages are cored in the cylinder pairs to lead the gases to opposite sides. The valves may be easily removed if desired, and the construction is fairly good from the viewpoint of both foundry man and machinist. The chief disadvantage is the limited area of the valves and the loss of heat efficiency due to the pocket. This form of combustion chamber, however, is more efficient than the "T" head construction, though with the latter the use of larger valves probably compensates for the greater heat loss. It has been stated as an advantage of this construction that both manifolds can be placed at the same side of the engine and a compact a.s.sembly secured. On the other hand, the disadvantage may be cited that in order to put both pipes on the same side they must be of smaller size than can be used when the valves are oppositely placed. The "L" form cylinder is sometimes made more efficient if but one valve is placed in the pocket while the other is placed over it. This construction is well shown at Fig. 92, D and is found on Anzani motors.

[Ill.u.s.tration: Fig. 93.--Sectional View of Engine Cylinder Showing Valve and Cage Installation.]

The method of valve application shown at Fig. 87 is an ingenious method of overcoming some of the disadvantages inherent with valve-in-the-head motors. In the first place it is possible to water-jacket the valves thoroughly, which is difficult to accomplish when they are mounted in cages. The water circulates directly around the walls of the valve chambers, which is superior to a construction where separate cages are used, as there are two thicknesses of metal with the latter, that of the valve-cage proper and the wall of the cylinder. The cooling medium is in contact only with the outer wall, and as there is always a loss of heat conductivity at a joint it is practically impossible to keep the exhaust valves and their seats at a uniform temperature. The valves may be of larger size without the use of pockets when seating directly in the head. In fact, they could be equal in diameter to almost half the bore of the cylinder, which provides an ideal condition of charge placement and exhaust. When valve grinding is necessary the entire head is easily removed by taking off six nuts and loosening inlet manifold connections, which operation would be necessary even if cages were employed, as in the engine shown at Fig. 93.

[Ill.u.s.tration: Fig. 94.--Diagrams Showing How Gas Enters Cylinder Through Overhead Valves and Other Types. A--Tee Head Cylinder. B--L Head Cylinder. C--Overhead Valve.]

[Ill.u.s.tration: Fig. 95.--Conventional Methods of Operating Internal Combustion Motor Valves.]

At Fig. 94, A and B, a section through a typical "L"-shaped cylinder is depicted. It will be evident that where a pocket construction is employed, in addition to its faculty for absorbing heat, the pa.s.sage of gas would be impeded. For example, the inlet gas rus.h.i.+ng in through the open valve would impinge sharply upon the valve-cap or combustion head directly over the valve and then must turn at a sharp angle to enter the combustion chamber and then at another sharp angle to fill the cylinders. The same conditions apply to the exhaust gases, though they are reversed. When the valve-in-the-head type of cylinder is employed, as at C, the only resistance offered the gas is in the manifold. As far as the pa.s.sage of the gases in and out of the cylinder is concerned, ideal conditions obtain. It is claimed that valve-in-the-head motors are more flexible and responsive than other forms, but the construction has the disadvantage in that the valves must be opened through a rather complicated system of push rods and rocker arms instead of the simpler and direct plunger which can be used with either the "T" or "L" head cylinders. This is clearly outlined in the ill.u.s.trations at Fig. 95, where A shows the valve in the head-operating mechanism necessary if the cam-shaft is carried at the cylinder base, while B shows the most direct push-rod action obtained with "T" or "L" head cylinder placing.

[Ill.u.s.tration: Fig. 96.--Examples of Direct Valve Actuation by Overhead Cam-Shaft. A--Mercedes. B--Hall-Scott. C--Wisconsin.]

[Ill.u.s.tration: Fig. 97.

CENSORED]

[Ill.u.s.tration: Fig. 98.

CENSORED]

The objection can be easily met by carrying the cam-shaft above the cylinders and driving it by means of gearing. The types of engine cylinders using this construction are shown at Fig. 96, and it will be evident that a positive and direct valve action is possible by following the construction originated by the Mercedes (German) aviation engine designers and outlined at A. The other forms at B and C are very clearly adaptations of this design. The Hall-Scott engine at Fig. 97 is depicted in part section and no trouble will be experienced in understanding the bevel pinion and gear drive from the crank-shaft to the overhead cam-shaft through a vertical counter-shaft. A very direct valve action is used in the Duesenberg engines, one of which is shown in part section at Fig. 98. The valves are parallel with the piston top and are actuated by rocker arms, one end of which bears against the valve stem, and the other rides the cam-shaft.

[Ill.u.s.tration: Fig. 99.--Sectional Views Showing Arrangement of Novel Concentric Valve Arrangement Devised by Panhard for Aerial Engines.]

The form shown at Fig. 99 shows an ingenious application of the valve-in-the-head idea which permits one to obtain large valves. It has been used on some of the Panhard aviation engines and on the American Aeromarine power plants. The inlet pa.s.sage is controlled by the sliding sleeve which is hollow and slotted so as to permit the inlet gases to enter the cylinder through the regular type poppet valve which seats in the exhaust sleeve. When the exhaust valve is operated by the tappet rod and rocker arm the intake valve is also carried down with it. The intake gas pa.s.sage is closed, however, and the burned gases are discharged through the large annular pa.s.sage surrounding the sleeve.

When the inlet valve leaves its seat in the sleeve the pa.s.sage of cool gas around the sleeve keeps the temperature of both valves to a low point and the danger of warping is minimized. A dome-shaped combustion chamber may be used, which is an ideal form in conserving heat efficiency, and as large valves may be installed the flow of both fresh and exhaust gases may be obtained with minimum resistance. The intake valve is opened by a small auxiliary rocker arm which is lifted when the cam follower rides into the depression in the cam by the action of the strong spring around the push rod. When the cam follower rides on the high point the exhaust sleeve is depressed from its seat against the cylinder. By using a cam having both positive and negative profiles, a single rod suffices for both valves because of its push and pull action.

VALVE DESIGN AND CONSTRUCTION

Valve dimensions are an important detail to be considered and can be determined by several conditions, among which may be cited method of installation, operating mechanism, material employed, engine speed desired, manner of cylinder cooling and degree of lift desired. A review of various methods of valve location has shown that when the valves are placed directly in the head we can obtain the ideal cylinder form, though larger valves may be used if housed in a separate pocket, as afforded by the "T" head construction. The method of operation has much to do with the size of the valves. For example, if an automatic inlet valve is employed it is good practice to limit the lift and obtain the required area of port opening by augmenting the diameter. Because of this a valve of the automatic type is usually made twenty per cent.

larger than one mechanically operated. When both are actuated by cam mechanism, as is now common practice, they are usually made the same size and are interchangeable, which greatly simplifies manufacture. The relation of valve diameter to cylinder bore is one that has been discussed for some time by engineers. The writer's experience would indicate that they should be at least half the bore, if possible. While the mushroom type or poppet valve has become standard and is the most widely used form at the present time, there is some difference of opinion among designers as to the materials employed and the angle of the seat. Most valves have a bevel seat, though some have a flat seating. The flat seat valve has the distinctive advantage of providing a clear opening with lesser lift, this conducing to free gas flow. It also has value because it is silent in operation, but the disadvantage is present that best material and workmans.h.i.+p must be used in their construction to obtain satisfactory results. As it can be made very light it is particularly well adapted for use as an automatic inlet valve. Among other disadvantages cited is the claim that it is more susceptible to derangement, owing to the particles of foreign matter getting under the seat. With a bevel seat it is argued that the foreign matter would be more easily dislodged by the gas flow, and that the valve would close tighter because it is drawn positively against the bevel seat.

Several methods of valve construction are the vogue, the most popular form being the one-piece type; those which are composed of a head of one material and stem of another are seldom used in airplane engines because they are not reliable. In the built-up construction the head is usually of high nickel steel or cast iron, which metals possess good heat-resisting qualities. Heads made of these materials are not likely to warp, scale, or pit, as is sometimes the case when ordinary grades of machinery steel are used. The cast-iron head construction is not popular because it is often difficult to keep the head tight on the stem. There is a slight difference in expansion ratio between the head and the stem, and as the stem is either screwed or riveted to the cast-iron head the constant hammering of the valve against its seat may loosen the joint.

As soon as the head is loose on the stem the action of the valve becomes erratic. The best practice is to machine the valves from tungsten steel forgings. This material has splendid heat-resisting qualities and will not pit or become scored easily. Even the electrically welded head to stem types which are used in automobile engines are not looked upon with favor in the aviation engine. Valve stem guides and valve stems must be machined very accurately to insure correct action. The usual practice in automobile engines is shown at Fig. 100.

[Ill.u.s.tration: Fig. 100.--Showing Clearance Allowed Between Valve Stem and Valve Stem Guide to Secure Free Action.]

VALVE OPERATION

The methods of valve operation commonly used vary according to the type of cylinder construction employed. In all cases the valves are lifted from their seats by cam-actuated mechanism. Various forms of valve-lifting cams are shown at Fig. 101. As will be seen, a cam consists of a circle to which a raised, approximately triangular member has been added at one point. When the cam follower rides on the circle, as shown at Fig. 102, there is no difference in height between the cam center and its periphery and there is no movement of the plunger. As soon as the raised portion of the cam strikes the plunger it will lift it, and this reciprocating movement is transmitted to the valve stem by suitable mechanical connections.

[Ill.u.s.tration: Fig. 101.--Forms of Valve-Lifting Cams Generally Employed. A--Cam Profile for Long Dwell and Quick Lift. B--Typical Inlet Cam Used with Mushroom Type Follower. C--Average Form of Cam.

D--Designed to Give Quick Lift and Gradual Closing.]

The cam forms outlined at Fig. 101 are those commonly used. That at A is used on engines where it is desired to obtain a quick lift and to keep the valve fully opened as long as possible. It is a noisy form, however, and is not very widely employed. That at B is utilized more often as an inlet cam while the profile shown at C is generally depended on to operate exhaust valves. The cam shown at D is a composite form which has some of the features of the other three types. It will give the quick opening of form A, the gradual closing of form B, and the time of maximum valve opening provided by cam profile C.

[Ill.u.s.tration: Fig. 102.--Showing Princ.i.p.al Types of Cam Followers which Have Received General Application.]

The various types of valve plungers used are shown at Fig. 102. That shown at A is the simplest form, consisting of a simple cylindrical member having a rounded end which follows the cam profile. These are sometimes made of square stock or kept from rotating by means of a key or pin. A line contact is possible when the plunger is kept from turning, whereas but a single point bearing is obtained when the plunger is cylindrical and free to revolve. The plunger shown at A will follow only cam profiles which have gradual lifts. The plunger shown at B is left free to revolve in the guide bus.h.i.+ng and is provided with a flat mushroom head which serves as a cam follower. The type shown at C carries a roller at its lower end and may follow very irregular cam profiles if abrupt lifts are desired. While forms A and B are the simplest, that outlined at C in its various forms is more widely used.

Compound plungers are used on the Curtiss OX-2 motors, one inside the other. The small or inner one works on a cam of conventional design, the outer plunger follows a profile having a flat spot to permit of a pull rod action instead of a push rod action. All the methods in which levers are used to operate valves are more or less noisy because clearance must be left between the valve stem and the stop of the plunger. The s.p.a.ce must be taken up before the valve will leave its seat, and when the engine is operated at high speeds the forcible contact between the plunger and valve stem produces a rattling sound until the valves become heated and expand and the stems lengthen out. Clearance must be left between the valve stems and actuating means. This clearance is clearly shown in Fig. 103 and should be .020" (twenty thousandths) when engine is cold. The amount of clearance allowed depends entirely upon the design of the engine and length of valve stem. On the Curtiss OX-2 engines the clearance is but .010" (ten thousandths) because the valve stems are shorter. Too little clearance will result in loss of power or misfiring when engine is hot. Too much clearance will not allow the valve to open its full amount and will disturb the timing.

[Ill.u.s.tration: Fig. 103.--Diagram Showing Proper Clearance to Allow Between Adjusting Screw and Valve Stems in Hall-Scott Aviation Engines.]

METHODS OF DRIVING CAM-SHAFT

Two systems of cam-shaft operation are used. The most common of these is by means of gearing of some form. If the cam-shaft is at right angles to the crank-shaft it may be driven by worm, spiral, or bevel gearing. If the cam-shaft is parallel to the crank-shaft, simple spur gear or chain connection may be used to turn it. A typical cam-shaft for an eight-cylinder V engine is shown at Fig. 104. It will be seen that the sixteen cams are forged integrally with the shaft and that it is spur-gear driven. The cam-shaft drive of the Hall-Scott motor is shown at Fig. 97.

[Ill.u.s.tration: Fig. 104.--Cam-Shaft of Thomas Airplane Motor Has Cams Forged Integral. Note Split Cam-Shaft Bearings and Method of Gear Retention.]

While gearing is more commonly used, considerable attention has been directed of late to silent chains for cam-shaft operation. The ordinary forms of block or roller chain have not proven successful in this application, but the silent chain, which is in reality a link belt operating over toothed pulleys, has demonstrated its worth. The tendency to its use is more noted on foreign motors than those of American design. It first came to public notice when employed on the Daimler-Knight engine for driving the small auxiliary crank-shafts which reciprocated the sleeve valves. The advantages cited for the application of chains are, first, silent operation, which obtains even after the chains have worn considerably; second, in designing it is not necessary to figure on maintaining certain absolute center distances between the crank-shaft and cam-shaft sprockets, as would be the case if conventional forms of gearing were used. On some forms of motor employing gears, three and even four members are needed to turn the cam-shaft. With a chain drive but two sprockets are necessary, the chain forming a flexible connection which permits the driving and driven members to be placed at any distance apart that the exigencies of the design demand. When chains are used it is advised that some means for compensating chain slack be provided, or the valve timing will lag when chains are worn. Many combination drives may be worked out with chains that would not be possible with other forms of gearing. Direct gear drive is favored at the present time by airplane engine designers because they are the most certain and positive means, even when a number of gears must be used as intermediate drive members. With overhead cam-shafts, bevel gears work out very well in practice, as in the Hall-Scott motors and others of that type.

VALVE SPRINGS

[Ill.u.s.tration: Fig. 105.--Section Through Cylinder of Knight Motor, Showing Important Parts of Valve Motion.]

Another consideration of importance is the use of proper valve-springs, and particular care should be taken with those, of automatic valves. The spring must be weak enough to allow the valve to open when the suction is light, and must be of sufficient strength to close it in time at high speeds. It should be made as large as possible in diameter and with a large number of convolutions, in order that fatigue of the metal be obviated, and it is imperative that all springs be of the same strength when used on a multiple-cylinder engine. Practically all valves used to control the gas flow in airplane engines are mechanically operated. On the exhaust valve the spring must be strong enough so that the valve will not be sucked in on the inlet stroke. It should be borne in mind that if the spring is too strong a strain will be imposed on the valve-operating mechanism, and a hammering action produced which may cause deformation of the valve-seat. Only pressure enough to insure that the operating mechanism will follow the cam is required. It is common practice to make the inlet and exhaust valve springs of the same tension when the valves are of the same size and both mechanically operated. This is done merely to simplify manufacture and not because it is necessary for the inlet valve-spring to be as strong as the other.

Valve springs of the helical coil type are generally used, though torsion or "scissors" springs and laminated or single-leaf springs are also utilized in special applications. Two springs are used on each valve in some valve-in-the-head types; a spring of small pitch diameter inside the regular valve-spring and concentric with it. Its function is to keep the valve from falling into the cylinder in event of breakage of the main spring in some cases, and to provide a stronger return action in others.

[Ill.u.s.tration: Fig. 106.--Diagrams Showing Knight Sleeve Valve Action.]

KNIGHT SLIDE VALVE MOTOR

The sectional view through the cylinder at Fig. 105 shows the Knight sliding sleeves and their actuating means very clearly. The diagrams at Fig. 106 show graphically the sleeve movements and their relation to the crank-shaft and piston travel. The action may be summed up as follows: The inlet port begins to open when the lower edge of the opening of the outside sleeve which is moving down pa.s.ses the top of the slot in the inner member also moving downwardly. The inlet port is closed when the lower edge of the slot in the inner sleeve which is moving up pa.s.ses the top edge of the port in the outer sleeve which is also moving toward the top of the cylinder. The inlet opening extends over two hundred degrees of crank motion. The exhaust port is uncovered slightly when the lower edge of the port in the inner sleeve which is moving down pa.s.ses the lower edge of the portion of the cylinder head which protrudes in the cylinder. When the top of the port in the outer sleeve traveling toward the bottom of the cylinder pa.s.ses the lower edge of the slot in the cylinder wall the exhaust pa.s.sage is closed. The exhaust opening extends over a period corresponding to about two hundred and forty degrees of crank motion. The Knight motor has not been applied to aircraft to the writer's knowledge, but an eight-cylinder Vee design that might be useful in that connection if lightened is shown at Fig. 107. The main object is to show that the Knight valve action is the only other besides the mushroom or poppet valve that has been applied successfully to high speed gasoline engines.

VALVE TIMING

It is in valve timing that the greatest difference of opinion prevails among engineers, and it is rare that one will see the same formula in different motors. It is true that the same timing could not be used with motors of different construction, as there are many factors which determine the amount of lead to be given to the valves. The most important of these is the relative size of the valve to the cylinder bore, the speed of rotation it is desired to obtain, the fuel efficiency, the location of the valves, and other factors too numerous to mention.

[Ill.u.s.tration: Fig. 107.--Cross Sectional View of Knight Type Eight Cylinder V Engine.]

Most of the readers should be familiar with the cycle of operation of the internal combustion motor of the four-stroke type, and it seems unnecessary to go into detail except to present a review. The first stroke of the piston is one in which a charge of gas is taken into the motor; the second stroke, which is in reverse direction to the first, is a compression stroke, at the end of which the spark takes place, exploding the charge and driving the piston down on the third or expansion stroke, which is in the same direction as the intake stroke, and finally, after the piston has nearly reached the end of this stroke, another valve opens to allow the burned gases to escape, and remains open until the piston has reached the end of the fourth stroke and is in a position to begin the series over again. The ends of the strokes are reached when the piston comes to a stop at either top or bottom of the cylinder and reverses its motion. That point is known as a center, and there are two for each cylinder, top and bottom centers, respectively.

All circles may be divided into 360 parts, each of which is known as a degree, and, in turn, each of these degrees may be again divided into minutes and seconds, though we need not concern ourselves with anything less than the degree. Each stroke of the piston represents 180 degrees travel of the crank, because two strokes represent one complete revolution of three hundred and sixty degrees. The top and bottom centers are therefore separated by 180 degrees. Theoretically each phase of a four-cycle engine begins and ends at a center, though in actual practice the inertia or movement of the gases makes it necessary to allow a lead or lag to the valve, as the case may be. If a valve opens before a center, the distance is called "lead"; if it closes after a center, this distance is known as "lag." The profile of the cams ordinarily used to open or close the valves represents a considerable time in relation to the 180 degrees of the crank-shaft travel, and the area of the pa.s.sages through which the gases are admitted or exhausted is quite small owing to the necessity of having to open or close the valves at stated times; therefore, to open an adequately large pa.s.sage for the gases it is necessary to open the valves earlier and close them later than at centers.

That advancing the opening of the exhaust valve was of value was discovered on the early motors and is explained by the necessity of releasing a large amount of gas, the volume of which has been greatly raised by the heat of combustion. When the inlet valves were mechanically operated it was found that allowing them to lag at closing enabled the inspiration of a greater volume of gas. Disregarding the inertia or flow of the gases, opening the exhaust at center would enable one to obtain full value of the expanding gases the entire length of the piston stroke, and it would not be necessary to keep the valve open after the top center, as the reverse stroke would produce a suction effect which might draw some of the inert charge back into the cylinder.

On the other hand, giving full consideration to the inertia of the gas, opening the valve before center is reached will provide for quick expulsion of the gases, which have sufficient velocity at the end of the stroke, so that if the valve is allowed to remain open a little longer, the amount of lag varying with the opinions of the designer, the cylinder is cleared in a more thorough manner.

Aviation Engines Part 17

You're reading novel Aviation Engines Part 17 online at LightNovelFree.com. You can use the follow function to bookmark your favorite novel ( Only for registered users ). If you find any errors ( broken links, can't load photos, etc.. ), Please let us know so we can fix it as soon as possible. And when you start a conversation or debate about a certain topic with other people, please do not offend them just because you don't like their opinions.


Aviation Engines Part 17 summary

You're reading Aviation Engines Part 17. This novel has been translated by Updating. Author: Victor Wilfred Page already has 673 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

LightNovelFree.com is a most smartest website for reading novel online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to LightNovelFree.com